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Abstract

I propose and test a simple model of the equity premium implied by the prices of

options on the stock market. The model assumes that markets for the stock index and

its options are frictionless and complete to extract as much information as possible

from their prices. Its forecasts of the equity premium are more accurate than those

in prior work, especially when arbitrage costs are low. It offers new economic insights

into why the premium varies, including why it increased for many years after the 2008

crisis. The model also provides a unified explanation of risk premiums for variance and

higher-order moments of market returns.

*Comments welcome. I thank Jack McCoy and Matt Massicotte for outstanding research assis-
tance. I thank Kent Daniel, Lars Lochstoer, Ian Martin, and Tano Santos for feedback. First draft:
January 2023. All errors are my own. Author email: paul.tetlock@columbia.edu.



1 Introduction

The equity risk premium, the expected return of the stock market over a risk-free bond, is a

key determinant of financial wealth that has far-reaching implications for the real economy.

Accurate and timely estimates of the equity premium could reveal the origins of stock price

fluctuations (Cochrane 2011), which have significant impacts on firm investment (Baker et al.

(2003)), personal consumption (DiMaggio et al. (2020)), and monetary policy (Cieslak and

Vissing-Jorgensen (2021)). Despite extensive research on the equity premium, economists’

estimates of its value differ widely,1 hindering intellectual and economic progress.

This paper proposes a new model of the equity premium that has compelling economic

and econometric rationales, requires minimal assumptions, and makes accurate predictions

of stock returns. The main assumptions are that markets for the stock index and its options

are frictionless and complete,2 reasonable approximations for S&P 500 index and option

markets. These assumptions are necessary to ensure a coherent benchmark for the equity

premium. If there are arbitrage opportunities, large trading costs, or incomplete markets,

multiple values of the equity premium could be consistent with observed prices.

The model extracts as much information as possible from the prices of stocks and options.

These prices depend not only on the equity premium, but also on the risk premiums for

stock return variance, skewness, and all higher-order moments. Just as investors can buy

stocks to earn the equity premium, they can create derivatives with payoffs based on return

variance and higher-order moments from portfolios of options to earn the variance and higher-

order premiums. Since the prices of these derivatives depend only on option prices, they

reveal market or option-implied values of stock return variance, skewness, and higher-order

moments. In complete and frictionless markets, one can infer the risk premiums on the stock

market and these derivatives if one knows the allocations to these securities in a “growth-

optimal” portfolio that maximizes an investor’s expected long-run wealth.3

1In December 2021, the median one-year equity premium forecast is 6.0%, whereas the cross-sectional
standard deviation of forecasts is 6.2% (Livingston Survey of Professional Forecasters).

2The market is complete over all possible realizations of market returns if options with a continuum of
strike prices are available (Ross (1976)). Frictionless markets have no arbitrage, trading costs, and leverage
and short sale constraints.

3In frictionless markets, the unique pricing kernel for any set of securities is the reciprocal of the gross
return of the portfolio with growth-optimal weights on these securities (Long (1990)). This growth-optimal
portfolio maximizes expected long-run wealth, which is equivalent to maximizing expected log utility of
wealth. The first-order conditions of this maximization for each security show that the growth-optimal
portfolio return is the reciprocal of the pricing kernel.
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The central theoretical finding of this paper is that each of these risk premiums is a

weighted sum of option-implied moments of returns, where the weights are positions in

the growth-optimal portfolio. For instance, if the growth-optimal portfolio has positions

of 130% in the stock market and −50% in variance-based derivatives, the equity premium

is 1.3 times option-implied variance minus 0.5 times option-implied skewness. However,

because the true growth-optimal weights depend on unobservable rational expectations of

market returns, computing risk premiums still requires additional assumptions or data. To

address this issue, a seminal paper by Martin (2017) imposes plausible constraints on investor

preferences and wealth, which are equivalent to assuming growth-optimal portfolio weights

of at least 100% on stocks and exactly 0% on variance and all higher-order derivatives, to

obtain a useful lower bound on the equity premium.

Instead of limiting risk premiums by restricting growth-optimal weights, this paper esti-

mates these weights using real-time data. The same growth-optimal weights that determine

the equity premium also dictate the variance premium, which one can directly measure as

option-implied variance minus expected market return variance. High-frequency stock prices

allow for precise estimation of expected variance (Andersen et al. (2001)). The main theoret-

ical result shows that the expected variance premium depends linearly on observable option-

implied moments of returns. I estimate this linear relationship to recover growth-optimal

portfolio weights and thus market risk premiums using real-time data on stock returns and

option prices. These regressions include a finite number of option-implied moments, up to

four, to approximate the growth-optimal portfolio and risk premiums.

The upshot is a new framework that enables point estimates, not bounds, of option-

implied risk premiums with minimal assumptions about investor preferences and wealth and

minimal data requirements. These implied risk premiums are firmly grounded in asset pricing

theory and forecast empirical equity and variance risk premiums quite well. Option-implied

forecasts of the equity and variance risk premiums outperform those from Martin’s lower

bound at horizons ranging from monthly to annual.4 The improvement in realized equity

premium predictability is substantial with a quarterly out-of-sample R2 of 3.01% for the

implied equity premium as compared to 0.99% for the lower bound forecast. The model fits

the expected variance risk premium even better, attaining an R2 of 70.5% as compared to

3.3% from forecasts of the quarterly premium based on the lower bound’s key assumption.

4I compute risk premium forecasts for the lower bound from the log utility pricing kernel implied by the
exact version of Martin’s lower bound, 1/Rm, where Rm is the gross market return.
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Stock return predictability from the implied equity premium is economically large, too,

with monthly (annual) forecasts enabling an increase of 14% (13%) in a log utility investor’s

annualized expected returns. These economic magnitudes are statistically imprecise because

the sample period of 1997 to 2021 is short and stock returns are highly volatile. However,

consistent with theory, excluding a 61-day period in 2008 in which the model’s assumption of

costless arbitrage is violated significantly strengthens return predictability from the implied

equity premium in statistical and economic terms.

The average implied equity premium is 7.9% per year with 4.5% volatility, whereas Mar-

tin’s lower bound averages 4.2% per year with 2.2% volatility. Consistent with Martin’s

preference and wealth restrictions, the implied equity premium exceeds the lower bound on

99.6% of days; and it is greater than 1% below the lower bound on all days. These rare and

small bound violations could arise from estimation error, approximation error, or illiquidity

in the prices of long-horizon options. The largest deviations between the lower bound and

implied equity premium forecasts occur in the post-2008 period, when the average deviation

increases from 2.3% to 5.0% per year, which is larger than the average lower bound.

To enhance economic intuition, I interpret the growth-optimal portfolio and the implied

equity premium as arising from a heterogeneous agent model like the classic behavioral mod-

els of Shiller (1984) and Campbell and Kyle (1993). The estimated growth-optimal portfolio

weights are the stock and option positions chosen by an unconstrained rational log utility

investor. The equity premium represents the compensation required by this growth-optimal

investor for bearing stock and derivative market risk that other investors, hereafter “behav-

ioral” investors, do not hold in equilibrium. Behavioral investors include any individuals or

institutions with different preferences from log utility of wealth, biases in beliefs, or con-

straints on investments.

One can infer the portfolio weights chosen by behavioral investors from market clearing

for stock and option markets. For example, if the growth-optimal weight on the stock market

exceeds 100%, as it usually does empirically, then behavioral investors must hold less than

100% weight on stocks, consistent with their risk aversion exceeding that of log utility.

If the growth-optimal weight on variance derivatives is negative, as it always is empirically,

behavioral investors must hold a positive weight in these securities, consistent with a desire to

hedge market variance risk. Interestingly, empirical estimates of the growth-optimal weight

on skewness securities imply that behavioral investors have exposure to market crashes,

much like many popular hedge fund strategies with negative skewness (Mitchell and Pulvino

(2001) and Malliaris and Yan (2021)).
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This heterogeneous agent perspective helps to explain why the empirical equity premium

is so high on average and why it varies over time. The high average premium arises be-

cause behavioral investors are averse to stock market risk, as well as variance risk, relative

to the growth-optimal investor, who must bear a disproportionate share of these risks. The

premium varies over time as behavioral investors’ beliefs, preferences, and constraints vary.

If behavioral investors become irrationally pessimistic and demand fewer stocks, the equi-

librium premium increases to entice the growth-optimal investor to buy stocks. Empirical

estimates of the growth-optimal weight on stocks suggest that this mechanism can explain

the persistent post-2008 increase in the equity premium. Although the model estimates these

time-varying portfolio weights solely from variance premium regressions on option-implied

moments, they are remarkably consistent with survey data on individual investors’ beliefs

and stock market participation (Greenwood and Shleifer (2014) and Gallup (2022)).

The implied risk premium model fundamentally links the risk premium in the stock

market to the variance and higher-order risk premiums in the option market. Because the

same time-varying growth-optimal portfolio weights (i.e., pricing kernel parameters) govern

these risk premiums, they exhibit large common time-series variation. This strong link is

consistent with the significant predictability of market returns from the variance premium

and tail risk (Bollerslev, Tauchen, and Zhou (2009) and Bollerslev, Todorov, and Xu (2015)).

The model also accounts for the average magnitude of the expected variance premium and

most of its variation over time with a median R2 of 70% across horizons from monthly to

annual.5

Furthermore, the model correctly predicts the existence and sign of the equity risk pre-

mium’s dependence on higher-order moments of stock returns. The reason is that the pricing

kernel is the reciprocal of the growth-optimal portfolio return, implying that it depends non-

linearly on stock returns with alternating signs on higher-order powers of returns, which I

show using a Taylor expansion in Section 2. As a result, expected stock returns depend on

higher-order return moments with alternating signs, consistent with the empirical pricing

of volatility, coskewness, and cokurtosis risks identified by Ang et al. (2006), Harvey and

Siddique (2000), and Christoffersen et al. (2021), respectively. Because of this nonlinearity

in the pricing kernel, the model also correctly predicts that the Capital Asset Pricing Model

(hereafter CAPM; Sharpe (1964) and Lintner (1965)) will fail to account for empirical risk

premiums since the CAPM pricing kernel is linear in market returns.

5For evidence that the expected variance premium is positive, see Coval and Shumway (2001), Bakshi
and Kapadia (2003), Carr and Wu (2009), and Christoffersen, Heston, and Jacobs (2013).
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This paper’s main contribution is the implied risk premium model and estimation method-

ology. The model enables new estimates of all market-related risk premiums, including the

equity and variance premiums, as it yields the empirical projection of the pricing kernel

on to market returns. This paper differs from prior studies by exploiting the relationship

between the variance risk premium and risk-neutral moments of excess market returns to

obtain explicit estimates of the market pricing kernel. This kernel provides point estimates

of the equity premium and insights into the pricing of market risks throughout the economy.

Recent studies by Ross (2015), Borovicka, Hansen, and Scheinkman (2016), Schneider

and Trojani (2019), and Jensen, Lando, and Pedersen (2019) specify conditions that enable

recovery of “physical” probabilities solely from derivative prices. The implied risk premium

model proposed here augments the prices of market-related derivatives with accurate esti-

mates of physical expected market variance. I show that this additional information enables

approximate recovery without restrictive assumptions on investor preferences and wealth.

The implied risk premium model is related to recent studies that provide bounds on the

equity premium, such as Martin (2017), Schneider and Trojani (2019), Chabi-Yo and Loudis

(2020), and Kadan and Tang (2020). The implied risk premium approach is most similar

to the Martin (2017) and Chabi-Yo and Loudis (2020) models, but those studies do not use

information from the variance risk premium, which enables nearly exact recovery. This study

also is related to studies by Schneider (2019) and Beason and Schreindorfer (2022) that use

options to decompose the equity premium and realized market returns. I propose a novel

decomposition of the equity premium in Section 4 that builds on these studies.

Many prior studies examine whether risk-neutral moments, such as skewness and kurtosis,

and tail risks in options contribute to stock risk premiums. Bollerslev and Todorov (2011)

relate tail risks in options to the equity premium. Kraus and Litzenberger (1978) and

Harvey and Siddique (2000) show that coskewness risk has a negative price of risk in the

cross-section of stocks. Neuberger (2012) and Kozhan et al. (2013) examine risk premiums

related to skewness. The implied risk premium framework provides a unified explanation for

many of these findings and predicts that these risk premiums should have a strong common

component, consistent with evidence on the near-perfect correlation between the variance

and skewness risk premiums in Kozhan et al. (2013).
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2 Theory

Here I introduce the model. I derive the equilibrium pricing kernel or stochastic discount

factor with minimal assumptions. In Section 2.2, I interpret this pricing kernel as arising

from the interaction between rational and behavioral investors.

2.1 Pricing Securities Based on the Stock Market

The model features risky securities with returns that depend on the stock market’s return.

In each period t, investors can invest in an asset with a risk-free return of Rf,t, which is

known at time t, and the risky market portfolio, which has an uncertain return of Rm,T

where T > t. The excess return of the stock market is then R̃m,T = Rm,T − Rf,t. The

model also includes markets for K − 1 > 0 derivative securities that offer excess returns of

R̃k
m,T − ck, where k = 2, 3, ..., K and ck is a constant ensuring that the cost of derivative

securities is zero as discussed below. I define c1 = 0 so that the market’s excess return has

the same form as derivative excess returns, R̃1
m,T − c1, with k = 1.

These securities are like futures on the market (k = 1) and swaps based on market

variance, skewness, and kurtosis (k = 2, 3, 4) and so on. The spanning result of Bakshi and

Madan (2000), as specialized in Carr and Madan (2001), shows that combinations of options

with a continuum of strike prices, all maturing at time T , can achieve any payoff based

on the market return, Rm,T .6 The availability of options with a continuum of strike prices

completes the market, which is equivalent to assuming K → ∞ securities where all higher-

order moments of market excess returns are tradable. To simplify the theory, I initially

assume that K → ∞ to approximate the many strike prices of traded options on the stock

market. For the empirical implementation, I consider approximations of this economy with

finite K ≤ 4.

I assume that there are no risk-free arbitrage opportunities and no trading frictions,

such as transaction costs or restrictions on leverage or short sales. I also assume that gross

market returns are finite and strictly positive, meaning at least one stock in the market

retains positive value. Under these conditions, Long (1990) shows that there exists a strictly

positive pricing kernel given by the reciprocal of the return on the portfolio combining the

6Martin (2017) applies this result to replicate the squared market return, R2
m,T .
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tradable securities with the maximum expected log return:

MT =

[
Rf,t +

∞∑
k=1

wk,t

(
R̃k

m,T − ck
)]−1

, (1)

where wk,t is the weight of security k in this portfolio.7 This portfolio is growth-optimal,

hereafter GO, since it maximizes expected long-run growth of investor wealth.

Under these minimal assumptions, the GO portfolio prices all tradable securities related

to the stock market:

Et [MTRT ] = 1, (2)

where RT is the return of any of the K market-related securities or the risk-free rate. Ap-

plying this GO pricing kernel equation to the risk-free rate, I obtain the familiar identity:

EtMT = R−1f,t .
8

One can express market prices in terms of “risk-neutral” expectations denoted by E∗t
and defined by the change of measure MT/EtMT > 0. The risk-neutral expectation of any

tradable return is E∗tRT = Rf,tEt [MTRT ] = Rf,t. Subtracting Rf,t from both sides, the

risk-neutral expectation of any tradable excess return is zero:

E∗t R̃k,T = 0,∀k, (3)

where R̃k,T denotes the excess return of any market-related security. Using this formula, I

solve for ck to obtain:

ck = E∗t R̃k
m,T ,∀k. (4)

For the market, c1 = 0 because E∗t R̃m,T = 0. For the variance-based security, c2 = E∗t R̃2
m,T .

These constants are known at time t because they are based on observable market prices—

i.e., risk-neutral expectations. Empirically one can identify the constants from option prices,

as I will show in equation (20).

7One can relax many of these conditions.
8I omit brackets in expectations that apply to a single term—i.e, E∗

t

[
R̃k,T

]
= E∗

t R̃k,T .
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Now I relate rational expectations of returns to risk-neutral expectations, which are based

on stock and option prices. The expected excess return of any market-related security is:

EtR̃T = Et

[
MT

EtMT

EtMT

MT

R̃T

]
= R−1f,tE

∗
t

[
M−1

T R̃T

]
= R−1f,tE

∗
t

[[
Rf,t +

∞∑
k=1

wk,t

(
R̃k

m,T − E∗t R̃k
m,T

)]
R̃T

]
, (5)

where the last equality substitutes for M−1
T and ck using equations (1) and (4), respectively.

I apply equation (5) to the excess returns of the stock market and traded derivatives by

setting R̃T = R̃n
m,T for n = 1, ..., K and simplifying:

EtR̃
n
m,T − E∗t R̃n

m,T = R−1f,t

∞∑
k=1

wk,t

(
E∗t R̃k+n

m,T − E∗t R̃k
m,TE∗t R̃n

m,T

)
,∀n. (6)

The risk premium of any market-related security is linear in risk-neutral moments, where

the term in parentheses is a demeaned risk-neutral moment. The only unknowns are the

GO portfolio weights: wk,t. However, since these weights vary over time and market returns

are highly unpredictable, one cannot simply regress market securities’ excess returns on

risk-neutral moments to obtain accurate estimates of the weights.

The implied risk premium in (6) is simplest for the equity premium, n = 1:

EtR̃m,T = R−1f,t

∞∑
k=1

wk,tE∗t R̃k+1
m,T . (7)

The exact version of Martin’s (2017) expected equity premium formula corresponds to as-

suming that the stock market is the GO portfolio—i.e., setting w1 = 1 and wk = 0 for k ≥ 2.

In this special case, one obtains the exact version of Martin’s (2017) equation:

EtRm̃,T = R−1f,tE
∗
t R̃

2
m,T , (8)

where the right-hand side is the stock market’s risk-neutral variance discounted by the risk-

free rate. This equity premium formula applies only if a log utility investor chooses to hold

a weight of 100% on stocks and 0% on all market derivatives, an unlikely special case.

The logic underlying equation (5) suggests a much less restrictive alternative to assuming
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that the stock market is the GO portfolio. If the GO investor exploits variation in the equity

premium by timing the market, the market weight would not equal 1 and would not even be

constant. To explore this further, I analyze an Kth-order approximation of the GO portfolio

in which wk,t = 0 for k > K, which implies that the inverse pricing kernel is a Kth-order

polynomial:

MT ≈

[
Rf,t +

K∑
k=1

wk,t

(
R̃k

m,T − E∗t R̃k
m,T

)]−1
, (9)

where K is finite. The time-varying weights wk,t enable optimal market timing in K market-

related securities—e.g., stocks and variance-, skewness-, and kurtosis-based derivatives when

K = 4. With this approximation, the expected equity premium is:

EtR̃m,T = R−1f,t

K∑
k=1

wk,tE∗t R̃k+1
m,T . (10)

Hereafter I refer to the model of the pricing kernel in equation (9) as the implied risk

premium (IRP) and its application to the stock market in equation (10) as the implied

equity premium (IEP). The IRP generalization of Martin (2017) shows that the predictive

power of risk-neutral variance will depend on the weight of the market, w1,t, and any nonzero

weights on market-related derivative securities in the GO portfolio. For example, a nonzero

quadratic term in the pricing kernel implies that the GO portfolio has a nonzero weight

in variance derivatives—i.e., w2,t 6= 0. If all additional GO weights are zero, the expected

equity premium would be linear in risk-neutral variance and skewness:

EtR̃m,T = R−1f,t

[
w1,tE∗t R̃2

m,T + w2,tE∗t R̃3
m,T

]
.

If instead one allows for nonzero weights on higher-order derivatives, such as bets on market

skewness, the expected equity premium would be linear in additional risk-neutral moments,

such as kurtosis. Since trading strategies based on skewness or even kurtosis in market

returns are feasible using deep-out-of-the-money options, this study examines approximation

degrees up to K = 4.

The remaining challenge is estimating up to K = 4 unknown GO weights in the IRP.9

9One could estimate predictive regressions of excess market returns on risk-neutral variance, skewness,
kurtosis, and fifth moments. But the regression coefficients would be poorly estimated since realized market
returns are weakly correlated with expected returns.
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To tackle this problem, I exploit the pricing equation for the variance risk premium, which

enables estimates of the unknown weights in terms of observable option prices and precisely

estimated expected physical variance. Applying the risk premium equation (6) to market

variance, n = 2, and setting a finite K value to approximate the GO portfolio, I obtain:

E∗t R̃2
m,T − EtR̃

2
m,T = −R−1f,t

K∑
k=1

wk,t

(
E∗t R̃k+2

m,T − E∗t R̃k
m,TE∗t R̃2

m,T

)
, (11)

an expression for the variance premium implied by option prices.

Equation (11) shows that the implied variance premium equals a linear combination

of higher-order risk-neutral moments weighted by the GO portfolio weights. As discussed

in Section 3, I obtain precise estimates of the left-hand side variables using realized high-

frequency moments for physical variance and option prices for risk-neutral variance. I also use

option prices to measure the risk-neutral moments on the right-hand side. Since equation

(11) holds at all times t, I use rolling time-series regressions of the variance premium on

higher-order risk-neutral moments to estimate the coefficients, wk,t, in the GO portfolio, as

discussed in Section 3.10

To provide intuition for the IEP, consider the linear, K = 1, approximation of the GO

pricing kernel. Setting K = 1 in equation (11), the GO portfolio weight on the market is

the variance risk premium divided by negative risk-neutral skewness:

w1,t =
E∗t R̃2

m,T − EtR̃
2
m,T

−R−1f,tE∗t R̃3
m,T

.

Since empirical estimates of the variance risk premium and negative risk-neutral skewness are

both consistently positive, the estimate of the GO market weight is always positive. Using

this optimal market weight, one obtain a closed-form expression for the equity premium in

terms of the variance premium, risk-neutral variance, and risk-neutral skewness:

EtR̃m,T =
E∗t R̃2

m,T − EtR̃
2
m,T

−E∗t R̃3
m,T

× E∗t R̃2
m,T .

The IEP will be positive whenever the GO market weight is positive, which it is in general.

10Instead one could use a purely cross-sectional approach by applying equation (5) to derivatives based on
market skewness, kurtosis, and higher-order moments, RT = R̃k

m,T , with k ≥ 3. The empirical challenges are
obtaining accurate estimates of higher-order physical moments of market returns and dealing with illiquidity
in the options needed for very high-order risk-neutral moments.
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In fact, as noted in the introduction, the empirical GO market weight almost always exceeds

one, which is consistent with the Martin lower bound in equation (8).

For readers seeking more intuition and detail, Appendix A provides a simple two-state

example that illustrates how empirical estimates of the variance premium and risk-neutral

skewness enable recovery of the true equity premium and pricing kernel. The next subsection

facilitates interpretation for the general case with any distribution of market returns.

2.2 A Heterogeneous Agent Model of Market-Related Securities

Building on the IRP framework, I provide a model that rationalizes the proposed GO pricing

kernel and offers insights into the meaning of the parameters. This model exploits the result

that a GO kernel prices a set of securities, e.g., the stock market and options on the market,

if and only if it satisfies the first-order condition (FOC) from a portfolio optimization of

a log utility investor who invests in these securities. Thus, the partial equilibrium model

analyzes the hypothetical portfolio choices of log utility or growth-optimal (GO) investors

in frictionless, complete markets for market-related securities.

There are two types of investors: type G, growth-optimal, who seek to maximize ex-

pected log utility of (long-run) wealth in period T and have rational expectations of returns;

and type B who select portfolios based on possibly biased expectations of returns, non-

standard preferences, and unspecified constraints. Because maximizing expected log utility

is equivalent to maximizing expected long-run wealth, type G investors choose to hold the

GO portfolio.11 Although this specification of sophisticated investors has strong normative

appeal (e.g., Markowitz (1976)) and support from evolutionary arguments, the existence of

such investors is not necessary for the IRP model’s validity. In period t, the endowed wealth

of type G is eG,t and that of type B is eB,t. I normalize the share of stock market shares to

1 and the supply of each derivative’s shares to zero.

This interpretation of the IRP model is notable for what it does not assume. There are no

restrictions on type B investors’ beliefs, preferences, or constraints, and no distributional as-

sumptions about returns, which need not even be stationary. The tractability of frictionless,

complete markets and myopia of log utility investors enables this generality.

11Allowing for intermediate consumption has no impact on the results.
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Type G (GO) investors solve the following portfolio choice optimization:

max
wG,k,t

Et [ln (eG,tRG,p,T )] ,∀k = 1, ...K, (12)

subject to RG,p,T = Rf,t +
K∑
k=1

wG,k,t

(
R̃k

m,T − E∗t R̃k
m,T

)
, (13)

where RG,p,T is the uncertain return on the type G (GO) portfolio. The FOC for optimal

weights shows that the reciprocal of the GO portfolio return prices all assets:

Et

[
R−1G,p,T

(
R̃k

m,T − E∗t R̃k
m,T

)]
= 0,∀k = 1, ...K, (14)

where k = 1 is the FOC for the market. These FOCs imply that the risk-free rate satisfies:

EtR
−1
G,p,T = R−1f,t . (15)

From these FOCs, the GO pricing kernel, MT = R−1G,p,T , prices all assets because:

Et

[
MT

(
R̃k

m,T − E∗t R̃k
m,T

)]
= 0

R−1f,tE
∗
t R̃

k
m,T −R−1f,tE

∗
t R̃

k
m,T = 0,∀k = 1, ...K, (16)

where Rf,t = (EtMT )−1.

Since the asset pricing equations ((3) and (16)) and pricing kernel equations ((1) and

(13)) are the same, the solution to the log utility investor’s portfolio choice problem results

in the same GO pricing kernel as the no-arbitrage argument from Section 2. Therefore the

same equity premium and variance risk premium formulas apply to the partial equilibrium

considered here.

The market clearing equations in this heterogeneous agent model state that type G (GO)

investors must hold whatever stocks and derivative securities that type B investors do not

hold at equilibrium prices. These equations relate type G investors’ portfolio weights, the

unknown parameters in the GO pricing kernel, to interesting economic variables. Stock

market clearing implies:

wG,1,teG,t + wB,1,teB,t = Pt

wG,1,t = e−1G,t (Pt − wB,1,teB,t) , (17)
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where Pt is the price and total capitalization of the stock market. Market clearing in each

derivative market implies:

wG,k,t = −e−1G,twB,1,teB,t,∀k = 2, ...K. (18)

Market clearing links GO weights to the portfolios of type B investors. For example, if

type B investors hold stocks but have no net holdings of any derivatives, then wG,k,t = 0

for k = 2, ..., K. In this case, the equity premium is proportional to risk-neutral variance,

EtR̃m,T = R−1f,twG,1,tE∗t R̃2
m,T , and the GO portfolio return is linear in excess market returns,

RG,p,T = Rf,t + wG,1,tR̃m,T . If type B investors hold no stocks or the same stock weight as

type G investors, then wG,1,t = 1 and the equity premium satisfies Martin’s exact formula in

equation (8).

As another example, if type B investors hold stocks and variance derivatives, then type

R investors are exposed to variance derivatives and any stocks not held by type B investors.

The GO portfolio return is then quadratic in the excess market return, RG,p,T = Rf,t +

wG,1,tR̃m,T +wG,2,t

(
R̃2

m,T − E∗t R̃2
m,T

)
, implying that the second-order, K = 2, approximation

in the no-arbitrage model will exactly account for the equity premium as in equation (10).

In this way, the complexity of type B investor portfolios determines the maximum degree of

risk-neutral moments needed to account for the equity premium and the polynomial degree

of the GO portfolio return.

2.3 Implications of the Model

The asset pricing implications of the model depend on the GO pricing kernel, which is the

reciprocal of GO portfolio return. When behavioral (type B) investors hold no derivatives

wk,t = 0 for k = 2, ..., K, this model resembles the conditional CAPM in that the GO pricing

kernel is a monotonic function of the conditional CAPM pricing kernel. To see how the

nonlinear transformation of the CAPM pricing kernel affects equilibrium pricing, consider a

Taylor expansion of this one-parameter GO pricing kernel around R̃m,T = 0:

MT = R−1f,t

[
1− w1,t

(
R̃m,T/Rf,t

)
+ w2

1,t

(
R̃m,T/Rf,t

)2
− w3

1,t

(
R̃m,T/Rf,t

)3
+ ...

]
, (19)

where the ellipsis summarizes higher-order terms that follow the same sign-flipping pattern

as above. The term that is linear in the market return is the same as that in the conditional

CAPM. As in the conditional CAPM, the equilibrium risk-return trade-off varies over time.
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In this model, variation in the weight of the market in the GO portfolio, w1,t, determines

the risk-return trade-off, including time-variation in the equity premium and the slope of the

cross-sectional relation between securities’ risk premiums and their market betas.

Interestingly, the same parameter, w1,t, affects how higher-order moments are priced. The

IRP model’s distinct feature is the risk premium’s dependence on higher-order moments. The

quadratic term mimics the pricing kernel proposed by Harvey and Siddique (2000), who find

that there is a significant price of coskewness risk coming from this term. The cubic term

gives rise to a cokurtosis premium of the opposite sign, which is consistent with the theory

and empirical findings in Christoffersen et al. (2021). Allowing for nonzero GO pricing kernel

weights on market derivatives based on variance, skewness, and kurtosis, as I do in Section

3, gives rise to additional higher-order terms in the pricing kernel. Yet even the simplest

version of the GO pricing kernel has the potential to explain many empirical shortcomings

of the conditional CAPM.

3 Empirical Methodology

Here I use the IRP model to develop daily estimates of the equity and variance premi-

ums for horizons of 30 days (monthly), 60 days (bimonthly), 90 days (quarterly), 180 days

(semiannual), and 360 days (annual). There are three key steps in the estimation procedure:

1. estimating risk-neutral moments, including option-implied market variance

2. estimating expected (physical) market variance based on realized variance

3. regressing the variance premium on risk-neutral moments.

The key data are daily physical and risk-neutral moments on the stock market. I use the

Standard and Poor’s (S&P) 500 index as the proxy for the market. As in Martin (2017), I

focus on the 1996 to 2021 period in which OptionMetrics data are available for options on the

S&P 500 index. I use intraday data on market returns from 1994 to 2021 to measure realized

market variance. I use the exchange-traded fund (ETF) with ticker SPY, SPDR S&P 500

ETF Trust, to measure intraday and daily market returns. As a historical equity premium

estimate, I use the market minus risk-free (MktRf) factor from Ken French’s website.

To measure risk-neutral moments of market returns, I use the prices of actively traded

options on the S&P 500 index (ticker SPX) from OptionMetrics. I use only cash-settled

European options with a.m. settlements that do not expire at quarter ends, following Martin
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(2017) and others. Following the options literature (e.g., Bakshi, Kapadia, and Madan

(2003), Carr and Madan (2005), Chang et al. (2013)), I employ thorough data cleaning

procedures to reduce the impact of illiquidity on the estimated risk-neutral moments—see

Appendix B.3 for option prices and Appendix B.2 for risk-neutral moments.

I measure physical moments of market returns using SPY ETF trades in the Trades and

Quotes (TAQ) database. I use daily realized variance (RV) based on SPY ETF returns over

78 intraday intervals spaced equally in business (i.e., transaction) time throughout regular

trading hours: 9:30am to 4:00pm Eastern time. Following the microstructure literature (e.g.,

Barndorff-Nielsen et al. (2008, 2009), Patton and Sheppard (2015)), I employ thorough

data cleaning procedures, such as averaging subsample estimates, to reduce the impact of

illiquidity on estimated physical return variance—see Appendix B.3 for details.

Some equity premium calculations require risk-free rates ranging from monthly to annual

horizons and dividend yields on the market. I use constant maturity market yields of Trea-

sury bills of 1, 3, 6, and 12 months from the Federal Reserve Economic Database (FRED) to

match equity premium horizons. I use the average of the one-month and three-month rates

as the 60-day rate. I use the one-month risk-free rate (Rf) from Ken French’s website before

July 31, 2001, when FRED data on the one-month yield become available.

Option implied volatility calculations require risk-free rates, dividend yields, and the

underlying index value. I use risk-free rate data from OptionMetrics and interpolate from

the nearest two dates for each option maturity. I use dividend yields from OptionMetrics

for the ticker SPX. The SPX closing price from OptionMetrics is the price of the underlying

SPX index.

3.1 Variance Premium Estimation

Estimation of the expected variance premium requires estimates of the risk-neutral and

physical variance of market excess returns, which will enable estimation of the GO portfolio

weights via equation (11) and thus the IEP.

3.1.1 Risk-Neutral Moments

I estimate risk-neutral moments of excess market returns, R̃m,T , from the prices of call

and put options on the market using the general formula of Bakshi and Madan (2000), as
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specialized in Carr and Madan (2001). This formula shows that risk-neutral expected excess

market returns raised to the jth power are:

R−1f,tE
∗
t R̃

j
m,T =

j!

Sj
t

[∫ ∞
Ft,T

(K − Ft,T )j−2C (K) dK +

∫ Ft,T

0

(K − Ft,T )j−2 P (K) dK

]
, (20)

where j = 2, 3, 4, 5, 6 for relevant moments, St is the market index value, K is the strike

price of call and put options priced at C(K) and P (K), respectively, and Ft,T = Rf,tSt is the

futures price of the market for maturity T .12 Denoting the risk-neutral moment of order j

for maturity T at time t by Mjt,T—e.g., M2t,30 is risk-neutral market variance at the 30-day

horizon on day t—I estimate Mjt,T using the right-hand side of equation (20) multiplied by

Rf,t. I refer to the right-hand side of equation (20) as a “discounted” risk-neutral moment,

denoted by M̃jt,T .

3.1.2 High-Frequency Identification of Expected Variance

The forecasts of market variance at horizons ranging from monthly to yearly are primarily

based on a one-parameter model of daily realized variance (rvt) as a fractionally integrated

stochastic process. The key parameter is the order of fractional differencing, 0 ≤ d ≤ 0.5.

This fractionally integrated model exhibits the well-established long memory property of

return variance (e.g., Andersen et al. (2001)) in which autocorrelations and impulse response

function weights decay at a hyperbolic rate, much slower than the exponential decay in classic

autoregressive (AR) models.

I assume the rvt process satisfies:

(1− L)drvt = εt, (21)

rvt = (1− L)−dεt, (22)

where εt is white noise and L is the lag operator defined by Lxt = xt−1 for any process xt.

Expanding equation (22) shows the implied hyperbolic impulse response weights:

rvt = εt + dεt−1 +
|d(d− 1)|

2!
εt−2 +

|d(d− 1)(d− 2)|
3!

εt−3 + ..., (23)

12This formula for moments of simple returns is analogous to the formula for the moments of log returns
analyzed in Bakshi, Kapadia, and Madan (2003), except that I do not scale higher-order moments by variance.
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I use maximum likelihood (ML) to estimate d on a recursive basis, each year expanding

the estimation window by an additional year. I also demean rvt on a recursive basis before

applying ML estimation to obtain dt.

Applying these real-time dt estimates to the rvt series enables real-time estimation of εt

via equation (21) and thus real-time forecasts of rvt+h at any horizon h ≥ 1 via equation

(22) or its equivalent equation (23). The recursive ML estimates of dt are within 0.40± 0.03

in 24 of 26 years. These estimates are precise in all years with standard errors ranging from

0.01 to 0.03, with the latter applying only to the first few sample years.

I use forecasts of rvt+h from this fractionally integrated model at horizons ranging from

monthly (RV30 =
∑30

h=1 rvt+h) to annual (RV360 =
∑360

h=1 rvt+h) as the basis for computing

the variance premium at these horizons. I adjust these raw fractionally integrated forecasts

because they are based on intraday realized variance during the trading day, whereas the

expected market variance in the variance premium is based on the variance of long-run (e.g.,

monthly or annual) market returns. The adjustment accounts for the overnight return period

and illiquidity from short-run reversals in intraday, daily, and weekly returns that do not

affect monthly and longer-run return variance. Although these two effects partially offset, it

is unlikely that they exactly cancel.

I address both issues by applying a simple regression-based multiplier, κt, to fractionally

integrated forecasts (e.g., EtRV30) to convert them into predictions of long-run return vari-

ance (e.g., PVart,30 = κtEtRV30). The multiplier, κt, is the coefficient from a regression of

squared 30-day market returns on 30-day predicted realized variance based on a recursive

expanding window. I omit the constant term so that the multiplier reflects the ratio of the

average squared market return to the average cumulative realized variance. I use the lagged

squared 30-day market return to maximize the correlation with the predicted 30-day real-

ized variance, which also depends on (intraday) squared market returns over the same 30-day

window as well as additional returns. Consistent with the offsetting effects, the average coef-

ficient estimate is 1.02 with a volatility of 0.20. The coefficient estimate averages 0.90 in the

pre-2008 period and 1.10 in the post-2008 period, indicating high-frequency return reversals

are much more pronounced in the first half of the sample.

Table 1, Panel A summarizes these estimates of risk-neutral and predicted market vari-

ance (M2 and PV ar), and the expected variance risk premium (i.e., the difference) at the

monthly and annual horizons (30 and 360 days). It also reports realized monthly and annual

equity premiums for comparison purposes. I annualize all quantities and multiply them by

100 to convert to annual percentages, except for the monthly equity premium which is in

17



monthly percentage terms.

[Insert Table 1 here]

The bottom rows in Panel A show that the average estimated variance premium is pos-

itive at the monthly and annual horizons at 1.52% and 1.55%, respectively. The middle

rows confirm that average risk-neutral monthly (annual) variance of 4.28% (4.30%) exceeds

the corresponding predicted market variance of 2.76% (2.75%). The top row shows that

the monthly equity premium averaged 0.75% with a volatility of 4.74% and an annualized

variance of 2.70% (12× 0.04742). This realized monthly market variance is almost identical

to the average predicted monthly variance, PVar30, of 2.76% shown in row four, providing

evidence that the fractionally integrated model is well-calibrated. The variance premium

estimates exhibit a very narrow range—the 5th to 95th percentile range is −0.02% to 5.25%

(0.35% to 3.80%) for the monthly (annual) variance premium—showing that the model’s

variance prediction closely tracks market pricing of variance. Table 1, Panel B confirms that

the correlations between model-predicted and risk-neutral variance are extremely high at

0.93 monthly and 0.91 annually, even though the fractionally integrated model does not use

option prices.

I also find that unadjusted rvt+h forecasts from the one-parameter (only d) fractionally

integrated model perform well relative to two challenging benchmarks: forecasts from the

well-known heterogeneous autoregressive (HAR) model proposed by Corsi (2009) and those

from risk-neutral variance (M2). Table 2, Panel A compares the ability of the HAR, M2, and

fractionally integrated (FI) models to predict realized variance RVT , as measured by out-

of-sample (OOS) R2, at horizons ranging from monthly (T = 30 days) to annual (T = 360

days). The null model for computing OOS R2 is average in-sample realized variance, which is

0.0260 annualized (16.1% volatility). The M2 model uses coefficients from a recursive linear

regression of RVT to make out-of-sample predictions. The fractionally integrated model

beats the HAR model at all horizons, especially those longer beyond 30 days, even though it

uses fewer parameters. It also beats the M2 model at all horizons, except monthly, despite

one fewer parameter. The last row shows that all three models have negative point estimates

of OOS R2 at the annual horizon, mainly driven by two unanticipated crisis years (2008 and

2020) out of the 24 non-overlapping observations (NNObs) at the yearly horizon.

[Insert Table 2 here]

Table 2, Panel B shows the in-sample R2 values resulting from adjusting each model’s

forecasts using linear transformations that best fit realized variance at each horizon. This

panel shows that the HAR model could perform better if its coefficients were better cal-

18



ibrated, e.g., using shrinkage, but it would still underperform the fractionally integrated

model at long horizons, which is striking given the fewer degrees of freedom in the fraction-

ally integrated model. The fractionally integrated model exhibits an in-sample R2 value of

10.3% at the annual horizon, which contrasts with the negative R2 OOS values in Panel A.

Table 2, Panel C, which reports pairwise correlations between the model forecasts, pro-

vides arguably the strongest evidence for the fractionally integrated model. The simplest ex

ante forecast of realized variance is a linear transformation of the market’s pricing of variance

(M2). At all horizons, the fractionally integrated model’s prediction of unadjusted realized

variance exhibits a correlation of 0.91 or 0.92 with M2. As noted earlier, the adjusted RV

forecasts are even more highly correlated with risk-neutral moments than the unadjusted

forecasts, suggesting that the multiplier parameter, κt, serves its intended purpose. Lastly,

whereas the range of variance premium estimates in the fractionally integrated model is nar-

row, as noted in Table 1, there are several outliers in variance premium estimates from the

HAR model, which occasionally predicts values below −10%.13

Based on these considerations, the main estimate of the expected variance premium for

maturity T is:

VPt,T = M2t,T − κtEtRVt,T , (24)

where EtRVt,T comes from the fractionally integrated model of expected market variance.

Figure 1 shows that the predicted variance from the fractionally integrated model closely

tracks risk-neutral variance. Panel A (Panel B) illustrates this finding for variance at the

monthly or 30-day (annual or 360-day) horizon. Panel C displays the resulting monthly and

annual estimates of the expected variance premium, as computed in equation (24).

[Insert Figure 1 here]

The fractionally integrated model of expected market variance provides a “natural ex-

planation” to the “puzzle” posed by Bollerslev et al. (2009), Bekaert and Hoerova (2014),

and Cheng (2019), who find that the variance premium seems to be negative in periods of

sudden market turmoil, such as September 2008, which would be inconsistent with investor

aversion to variance risk. The fractionally integrated model of the variance premium does

not have this puzzling feature and forecasts return variance just as well, if not better, than

the models used in prior work, as shown in Table 2. Although the limited and noisy data

on crises do not permit clear statistical inferences about which model is most accurate, the

13For comparability, I apply an analogous κt adjustment to the raw RVT forecasts from the HAR model
when computing the variance premium in the HAR model.
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fractionally integrated model has strong theoretical appeal and is maximally parsimonious

with its single parameter.

3.2 Equity Premium Estimation

Using empirical estimates of the expected variance premium from equation (24) and risk-

neutral moments from equation (20), I now estimate the equity premium using the key IRP

equation (10). As suggested by the equation, I use linear regressions of the expected variance

premium on (up to four) discounted risk-neutral moments—M3, M4, M5, and M6 multiplied

by R−1f,T—to estimate (up to four) GO portfolio weights as coefficients in equation (11).

The implementation hurdles are time-varying GO portfolio weights, heteroskedasticity in

variance premiums, multicollinearity in risk-neutral moments, persistence in these measures,

and approximation error in the theoretical variance premium equation (11). To estimate the

time-varying GO weights, I use recursive regressions with exponentially declining weights on

distant data. The half-life of the exponentially declining weights is 1000 calendar days, which

matches the length of rolling windows used in the realized variance literature—e.g., Patton

and Shepard (2015). Shortening the window captures more time-variation in GO weights,

whereas lengthening it reduces estimation error of the weights. Other data- or theory-driven

choices could improve on these weights—e.g., by incorporating insights from the dynamic

beta literature as in Engle (2016).

To enhance efficiency and robustness to heteroskedasticity, I apply inverse variance (i.e.,

precision-based) weights to the errors in the least squares objective function, as in weighted

least squares. I use PVar−1t,30 as the precision weights.

I address multicollinearity in risk-neutral moments by imposing theory-driven assump-

tions to reduce dimensionality. As shown in Table 3, Panel A risk-neutral moments of differ-

ent orders are strongly correlated within a given horizon. These strong correlations pose a

challenge to accurate estimates of the GO portfolio weights, as multicollinearity among the

regressors inflates standard errors. Table 3, Panel A shows correlations between M2, M3,

M4, M5, and M6 at monthly and annual horizons.14 Risk-neutral moments also are strongly

correlated across horizons. Table 3, Panel B reports the correlations between discounted

third- and fourth-order risk-neutral moments, M3 and M4, at monthly through annual hori-

zons (T = 30, 60, 90, 180, 360 days). The correlations between the same-order moments with

14The table includes M2 for reference even though it is not a regressor in the variance premium regressions.
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monthly to quarterly horizons range from 0.92 to 0.98. The correlations between the same-

order moments with semiannual and annual horizons are also very high at 0.86 (0.97) for

third-order (fourth-order) moments.

[Insert Table 3 here]

Motivated by theory, I impose a strong but reasonable assumption that the GO portfolio

weights on each market-related security are equal across all horizons up to one year:

wk,t,T1 = wk,t,T2 ,∀T1 = 30, ..., 360, T2 = 30, ..., 360 (25)

For example, the GO weights on the stock market are equal at the monthly and annual

horizons; and the weights on variance-based derivatives are equal at these horizons. These

cross-horizon restrictions facilitate identification of the GO weights because cross-moment

correlation is much weaker across different horizons, as shown in Table 3, Panel A. Asset

pricing theory suggests GO weights on a given market-related security are likely to be similar

across horizons. In the model from Section 2.2, behavioral investor fear of stocks drives time-

series variation in w1,t,T for all maturities T ; and investor desire to hedge variance drives

variation in w2,t,T for all T .15 The pricing kernel from Martin’s (2017) lower bound on

the equity premium trivially satisfies the cross-horizon restriction in equation (25) because

w1,t,T = 1 for all T and wk,t,T = 0 for all T when k > 1.

I adopt two methods to address approximation error from the truncation (finite K) of the

expected variance premium equation (11) arising from the GO pricing kernel approximation

in equation (9). I allow an intercept in each variance premium regression that accounts for

the average value of omitted higher-order moments. I also evaluate how variance premium

estimates improve as K increases, using values of K = 1, 2, 3, 4.

I jointly estimate variance premium regressions in equation (11) at all horizons, monthly

through annual, to account for the strong correlation in the error terms and impose the

cross-horizon restrictions in equation (25). I employ the feasible generalized least squares

(FGLS) estimator described above, using weights inversely proportional to variance and de-

clining exponentially with time. Because it allows for correlation across equations, this FGLS

estimator is a weighted seemingly unrelated regression (SUR), as defined in Zellner (1962).

I require a minimum of one year of data—i.e., 1996 data—for these recursive regressions,

meaning that the first estimates become available in January of 1997. I use the estimated

15Although the model applies to a each maturity T , maturities are linked through the market clearing
condition when there is common time-series variation in wB,k,t,T across T for any value of k, such as k = 1
(stock holdings) or k = 2 (variance-based derivative holdings).
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time-varying GO weights from these regressions, along with risk-neutral moments, to esti-

mate the time-varying variance and equity premiums at each horizon as in equations (11)

and (10), respectively.

4 Risk Premium Estimates

Here I report the model’s estimates of the variance and equity premiums and evaluate its

performance against natural benchmarks. I begin by measuring the fit of the variance pre-

mium regression, R2, across all horizons for a range of approximation degrees, K = 1, 2, 3, 4.

As a benchmark for these four versions of the model, I consider the representative log utility

model used for Martin’s (2017) lower bound. In this log utility model, the variance premium

is simply the negative of discounted risk-neutral skewness—i.e., equation (11) with w1,t = 1

and wk,t = 0 for all k > 1. This analysis shows whether variance premiums implied by

various models can explain the empirical expected variance premium. It also enables tests of

the validity of the cross-horizon restriction on GO weights, which necessarily impairs model

performance at some horizons.

The variance premium tests examine the ability of models to explain the expected pre-

mium in equation (24), rather than the realized premium. Using the realized premium would

reduce the power of the test, as shown in Table 2, Panel A. The precise estimate of the ex-

pected variance premium depends on the model of physical variance but alternative models

provide similar estimates, as shown in Table 2, Panel C.

I report percentage R2 values based on recursive rolling regressions for the expected

variance premium as described in Section 3.2. Table 4 shows these R2 values for monthly

to annual horizons (rows) for the five models: log utility and the K = 1, 2, 3, 4 IRP models,

which include K regressors consisting of risk-neutral moments of orders 3, ..., K + 2. All

four IRP models nest the log utility model. The null model for computing R2 values is

the historical mean of the expected variance premium, estimated using the same recursive

procedure with the declining exponential weights as in the four IRP models. The recursive

historical mean of the quarterly (90-day) variance premium ranges from a low of 0.95% to a

high of 2.44% and averages 1.66% per year from 1997 to 2021, closely matching the average

predicted values for the models. The recursive means are similar for other horizons.

[Insert Table 4 here]

The first column in Table 4 shows that the log utility model has modest predictive power

for the empirical variance premium at monthly to quarterly horizons (R2 5%) but has no
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predictive ability at the semiannual and annual horizons (R2 < 0). In contrast, the implied

variance premium from all four IRP models explains most of the variation in the empirical

variance premium, as by median R2 statistics that exceed 50%. The lowest explanatory

power of any model at any horizon is 43%. The median R2 across horizons increases with

the approximation degree of the model, K, suggesting that using a high-order approximation

could be necessary to capture relevant variation in the GO pricing kernel. The K = 4 implied

variance premium, which uses risk-neutral moments M3, M4, M5, and M6 to explain the

variance premium, has a median R2 value of 70% as compared to the median R2 of 56% for

the K = 1 model.

Table 4 provides evidence that the cross-horizon restriction, equation (25), imposed on

GO weights affects its ability to explain variance premium variation at extreme horizons.

Comparing the second through fourth rows to the first and last rows, one sees that the

IRP model’s R2 is lowest at the shortest (30-day) and longest (360-day) horizons. Even so,

the K = 4 model explains 62% of monthly and 56% of annual variance premium variation,

indicating that the cross-horizon restriction is not overly burdensome.

Because the recursive variance premium regressions produce estimates on each date, I

report estimates of the entire time-series of GO portfolio weights. Figure 2, Panel A shows

the GO portfolio weights on the stock market, w1,t from all K = 1, 2, 3, 4 models. All

models include the first (k = 1) term in the pricing kernel. Because of this term, which

represents investor aversion to stock risk, the equity premium depends on the second-order

(k + 1 = 2) risk-neutral moment (variance) and the variance premium depends on the

third-order (k + 2 = 3) risk-neutral moment (skewness). In the heterogeneous agent model

interpretation of the IRP from Section 2.2, the GO portfolio weight on the stock market

reflects behavioral investors’ reluctance to hold stocks, which gives rise to risk premiums

that induce the GO investor to hold more stocks.

[Insert Figure 2 here]

Estimates of the GO weight on the stock market are always positive in all K = 1, 2, 3, 4

models. These estimates are stable except in the first sample year, 1997, when there is

limited historical data. The market’s GO weight in the K = 1 model is easiest to interpret

because the GO investor holds no other market-related positions in this model. The market’s

GO weight in this model always exceeds one, suggesting that the typical investor is more

risk averse than the log utility benchmark as discussed in Section 2.2.

I interpret the market’s GO weight in the K > 1 models along with the GO investor’s

positions in other market-related securities, such as variance-based derivatives, which are
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correlated with stocks. Figure 2, Panel B shows the GO weights in the four market-related

securities from the K = 4 model. This figure omits the first sample year, when estimates

are noisy.

The GO weights on the stock market and the k = 4 security (swap on market kurtosis) are

always positive, whereas the weights on the variance- and skewness-based market securities

are consistently negative. Most weights fluctuate widely in the first few years of the sample

and stabilize shortly after 2008, showing the impacts of estimation noise and uncertainty.

There are strong time-series correlations among the four weights, stemming partly from the

correlations among the underlying risk-neutral moments, which exhibit alternating signs as

shown in Table 3, Panel A. As a result, weights with an odd degree k = 1, 3 are negatively

(positively) correlated with weights of an even degree k = 2, 4 if these weights are of the

same (opposite) signs. For example, the stock market (k = 1) weight is positively correlated

with the variance-based (k = 2) weight because these weights have opposite signs—i.e., stock

weight is positive and variance-based weight is negative.

By placing a positive weight on stocks, the GO investor benefits from the unconditional

equity premium. With a negative weight on variance, the GO investor takes advantage of

the variance premium. The GO weight on the stock market is persistently higher after the

2008 crisis in the K ≥ 3 models. The counterpart to this increase in stock holdings is

that behavioral investors must hold fewer stocks after the crisis. The consistently negative

weight on skewness in the GO portfolio suggests that some behavioral investors exhibit a

preference for negative skewness. Although the model does not explain why other investors

are willing to speculate on stock market crashes, the reason cannot be rational log utility

maximization. One possibility is that hedge funds prefer trading strategies with negative

skewness because of reputation concerns, as argued in Malliaris and Yan (2021), and their

assets under management have grown dramatically since 2008.

I now report estimates of the GO pricing kernel to elucidate the economic implications of

these GO weights. Figure 3, Panel A shows GO pricing kernels based on different approxima-

tion degrees, K = 1, 2, 3, 4, using the median values of GO weight estimates over the entire

sample. The excess market returns plotted on the x-axis in the figure span the 5th-to-95th

percentile range of annual returns in the sample. The values of the pricing kernels range

from 0.5 to 3. These positive values are consistent with the absence of arbitrage. All pricing

kernels are monotonically decreasing over this range, consistent with investor risk aversion.

The K = 3 pricing kernel takes on the most extreme values, ranging from 0.58 when the

excess market return is 32.8% to 3.03 when the excess return is −26.4%, whereas the K = 2
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kernel is the flattest. The K = 4 kernel has the highest curvature as measured by the ratio

of slopes at extreme market returns, changing from a slope of −14.93 in bad times to a slope

of just −0.32 in good times.

[Insert Figure 3 here]

Figure 3, Panel B shows the pricing kernel on a date with expected monthly returns

exactly at the 95th percentile for the full (K = 4) model: May 25, 2010 in the aftermath

of sharp stock market decline. As expected, all pricing kernels are steeper on this date,

especially those that include cubic and quartic terms. The K = 3 (K = 4) pricing kernel

peaks at 3.70 (2.62) and has a low of 0.56 (0.67) in this time of turmoil. Outside the

typical range of market returns, the pricing kernel approximation is not necessarily accurate.

Non-monotonic kernels and negative values can arise in such cases.16 Fortunately the IRP

closed-form expressions for risk premiums do not require kernel estimates in such extreme

scenarios.17

Table 5, Panel A summarizes the equity premium estimates from the four IRP models

and the log utility model. The average annual (360-day) IEP estimates range from 6.84%

to 9.48% in the IRP models; and the monthly (30-day) IEP averages range from 0.57% to

0.85% per month. These estimates are significantly higher than the log utility estimates of

4.22% per year and 0.35% per month. The 95th percentile of the IEP is 15.2% in the K = 4

as compared to just 7.6% in the log utility model, reflecting the higher skewness in the IEP

model. The main reason for the higher average, volatility, and skewness of the IEP relative

to the log utility model is that the estimated GO weight on the stock market consistently

exceeds one. Because the risk-neutral variance is positive, volatile, and positively skewed, a

higher GO weight on the market increases the average, volatility, and skewness of the IEP.

[Insert Table 5 here]

I analyze the forecasting performance of the IEP with the caveat that stock returns are

highly unpredictable and the sample contains just 24 non-overlapping yearly periods. Table

5, Panel B shows out-of-sample R2 values for the four IRP models and the log utility model

at monthly to annual horizons. The null model for R2 computation is a constant expected

return equal to the sample average from 1926 to 1995—i.e., before the sample begins.18 The

16The estimated pricing kernels are positive and monotonic mainly because the positive GO stock market
weight dominates the other weights at typical return realizations.

17For applications that require pricing kernel values in rare disaster scenarios, linear extrapolation of the
GO kernel from the typical range of returns is probably sufficient.

18Using a recursively estimated historical mean would result in slightly worse performance for the null
model because returns are modestly negatively autocorrelated in the sample.
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log utility model has a positive R2 at monthly to semiannual horizons, replicating the finding

in Martin (2017) and Chabi-Yo and Loudis (2020). The equity premium predictions from

the first-order IRP model (IEP1) have lower R2 values than the log utility model’s prediction

(RLUEP) at these horizons.

However, the equity premium predictions from the third- and fourth-order IRP models

(IEP3 and IEP4) outperform the log utility predictions (RLUEP) at all horizons. With

few exceptions, the IRP model predictions improve as the approximation degree of the GO

pricing kernel increases. At all horizons, the IEP4 R2 values are high, judged against the

low standards of the return predictability literature (Goyal and Welch (2008, 2021)). The

R2 is 1.12% monthly, 3.04% quarterly, and 9.15% annually.

In economic terms, these IEP4 R2 values translate into large improvements in the GO

investor’s expected return. I quantify the value of forecasting from the perspective of a

GO (log utility) investor holding the market and risk-free asset using the simple one-period

framework of Campbell and Thompson (2008). The ability to forecast the equity premium

increases this investor’s expected excess portfolio return by R2

1−R2 (1 + S2), where S2 is the

squared unconditional Sharpe ratio on the market and R2 is the model’s ability to predict

market returns. Using the S2 and R2 values from Tables 1 and 5, the investor increases

annualized returns by 14.1% (12.6%) with the monthly (annual) IEP4 forecasts. I interpret

these large estimates of investment gains with caution given the short sample.

I now assess the calibration and incremental explanatory power of IEP forecasts using

regressions to predict stock market returns. Ideally, the IEP would predict the realized equity

premium with a coefficient of unity and no other variable, such as the variance premium,

would forecast returns. Table 6 tests this hypothesis by regressing excess market returns

on IEP4, the Martin (2017) lower bound (RLUEP), and the variance premium. The table

shows results for horizons ranging from monthly to annual (30 to 360 days) in Panels A to E,

where the independent and dependent variables in each regression have matching horizons.

There are h − 1 overlapping days in each daily predictability regression with a horizon of

h days. Standard errors of regression coefficients are based on the truncated Hansen and

Hodrick (1980) kernel with a bandwidth of h− 1 days.

[Insert Table 6 here]

At all horizons, equity premium predictions from the IRP model (IEP4) compare well

to those in Martin (2017) and those based on the variance premium in the full-sample

regressions in columns (1) to (3). The univariate coefficients on IEP4 range from 0.64 to

1.12 at the monthly to annual horizon, which is reasonably close to unity. Interestingly, all of
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the point estimates on risk-neutral variance, RLUEP , and the variance premium, V P , are

close to zero or negative, which contrasts with the (unreported) uniformly positive univariate

coefficients on these predictors. Standard errors are high because of the short and volatile

sample period and the strong correlations among the three predictors: IEP4, RLUEP, and

VP.

Since the model in Section 2 assumes no arbitrage, the IEP should forecast market returns

more accurately when this assumption is satisfied. Columns (4) to (6) in Table 6 show

predictability regressions based on a sample that excludes 61 trading days from September

19 to December 15, 2008 in which arbitrage between stock and option markets is limited.

I refer to the period without these 61 days as the no-arbitrage sample. The United States

Securities and Exchange Commission began placing restrictions on short sales on September

17, 2008, which “dramatically increased bid-ask spreads for options” according to Battalio

and Schultz (2011).19

Stock return predictability from IEP4 roughly triples when excluding the 1% of days (61

of 6,272) with severely limited arbitrage—i.e., R2
adj in column (4) is three times its value

in column (1)—in the univariate specifications with monthly to quarterly horizons. The

statistical significance of the coefficients on IEP4 is much stronger, too. The incremental

R2
adj from the other predictors remains low or even negative in the no-arbitrage period. These

findings suggest that the IRP model performs better when arbitrage costs are low.

Figure 4 shows that the one-year (360-day) IEP from K = 4 is strongly correlated (0.88)

with Martin’s (2017) lower bound on the equity premium. It shows that IEP4 is greater

than this lower bound on 99.6% of days from 1997 to 2021. The model deviation is, however,

substantial in the post-2008 period, averaging 5.0% per year with 2.5% volatility. The main

reason for this discrepancy is the post-2008 increase in the growth-optimal weight on stocks,

as shown in Figure 2, which increases the required equity premium in equilibrium. As

suggested by the heterogeneous agent model and survey evidence on beliefs (Greenwood and

Shleifer (2014)), selling of stocks by behavioral investors with pessimistic expectations of

returns could drive this increase in growth-optimal stock holdings. But the model estimates

the time-varying market GO weight solely from rolling regressions of the variance premium

on risk-neutral skewness, controlling for other option-implied moments.

19For each horizon, h, I measure the spread on a synthetic stock market index, created from S&P 500
options and risk-free Treasury bills maturity on day h, as a percentage of the index value. I compute the
daily average synthetic spreads across all strike prices weighting options by dollar volume. I define the 61-day
exclusion based on the first doubling of the weekly average synthetic spread, September 19, and the first
halving of the monthly average spread, December 15, after the initial short sale ban, September 17, 2008.

27



[Insert Figure 4 here]

Figure 5 shows the IEP for the IRP models with approximation degrees K = 1, 2, 3, 4.

Panel A (Panel B) shows the one-year (monthly) IEPs. Reassuringly, the correlations be-

tween the IEP estimates from different models are very high, exceeding 0.93 for all pairwise

correlations between the K = 2, 3, 4 models at the monthly and annual horizons. There is

also evidence for a common factor in expected returns across horizons. The cross-horizon

correlations range from 0.85 to 0.88 between IEPs at the monthly and annual horizons for

all models.

[Insert Figure 5 here]

Both panels indicate that the IEP rose and fell abruptly in the economic crises of 2008

and 2020. Recall that the IEP is a linear combination of risk-neutral moments weighted by

the GO portfolio allocations. Since the K = 1 IEP exhibits this same pattern around crises,

changes in the IEP term with risk-neutral variance must play a significant role. Since Figure

2 shows that the GO weight on the market did not change dramatically during these crises,

changes in the risk-neutral variance must have driven these fluctuations in the IEP.

Figure 6 decomposes the IEP into contributions from each market exposure in the GO

portfolio, as represented by each term in the weighted sum of risk-neutral moments in equa-

tion (10). The main contributor to the equity premium is the k = 1 term representing the

GO investor’s required compensation for bearing stock market risk. The k = 1 term, which

is based on risk-neutral variance (M2), averages 7.95% per year with 5.53% volatility, ac-

counting for the entire mean IEP and more than 100% of IEP variance. This term reaches

peaks exceeding 40% per year during the 2008 and 2020 crises. The k = 3 term representing

the GO investor’s exposure to crash risk partially offsets the k = 1 term during crises. The

reason is that the GO investor reduces exposure to market risk by placing a negative weight

on R̃3
m in both crises, as shown in Figure 2, Panel B.

[Insert Figure 6 here]

Figure 7 shows the level and slope of the term structure of the implied equity pre-

mium (IEP). The level is IEP4360 in equation (9) based on the fourth-order (K = 4)

approximation of the growth-optimal pricing kernel. The slope is the difference between

the annualized one-year and one-month IEPs divided by the difference in these maturities:

(365/360× IEP4360 − 365/30× IEP430) /((360− 30)/365).

[Insert Figure 7 here]

The average slope of the IEP term structure is zero, reflecting an average of a slight

positive slope in normal times and an extremely negative slope in times of crisis. The level
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and slope of the IEP term structure are strongly negatively correlated. The slope has a

correlation of −0.62 with IEP4360 and −0.94 with IEP430. Whenever the IEP is high, the

short-run IEP is even higher than the long-run IEP. The short-run IEP exhibits the highest

volatility among IEPs at different horizons—e.g., the volatilities of annualized IEP4s are

10.83% = 365/30 × 0.89% monthly versus 4.57% = 365/360 × 4.51% annual from Table 5,

Panel A. This pattern of higher volatility for short-term rates is reminiscent of the analogous

finding for bonds, but there is no notable correlation (−0.06) between the slope of the IEP

and US Treasury term structures at the one-month to one-year horizon.

5 Conclusion

The economic insight from the IRP model is that the equilibrium equity premium depends

on the amount of stock market risk borne by a GO investor, who is exposed to the market

through stocks and market-related derivatives. If this GO investor has a real-world counter-

part, one can interpret GO exposures as market positions that other investors do not want

to hold. Variation in investor desires to hold market positions drives variation in the equity

premium and other risk premiums related to the market, such as the variance and skewness

risk premiums.

The econometric innovation in the IRP model is using high-frequency data to identify

the stock market’s physical return variance, which facilitates the recovery of market risk

premiums from option prices. Although the market variance premium is well estimated,

approximation and estimation error affect risk premium estimates through their impact on

the weights in the growth-optimal pricing kernel. Future research should seek to minimize

these errors by improving risk-neutral moment estimation and investigating higher-order

physical moments of returns. Even without these improvements, this paper’s implementation

of the IRP model provides useful new estimates of market risk premiums and the empirical

pricing kernel. Researchers can use these estimates to test whether market-related risks are

priced in other securities, including individual stocks and bonds. Lastly, since the theory and

estimation approach here applies equally well to the set of individual securities with traded

options, one can use the IRP model to estimate expected returns of individual stocks with

options, even without the preference assumptions in Martin and Wagner (2019) or Kadan

and Tang (2020). I am pursuing this idea in ongoing research.
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Table 1: Summary Statistics

Panel A summarizes estimates of risk-neutral and predicted market variance (M2 and PV ar), and
the variance risk premium (i.e., the difference), and the equity premiums (EP ) at the monthly
and annual horizons (30 and 360 days). I annualize all quantities and multiply them by 100 to
convert to annual percentages, except for the monthly EP which is in monthly percentage terms.
The statistics in columns are the mean, standard deviation (StdDev), percentiles (P5, P25, P50,
P75, P95), and number of days in the 1997 to 2021 sample.

Mean StdDev P5 P25 P50 P75 P95 Days
EP30 0.75 4.74 -7.08 -1.58 1.27 3.49 7.16 6524
EP360 8.64 17.72 -26.10 2.10 11.26 18.89 33.96 6295
M230 4.28 4.37 1.17 1.87 3.14 5.03 10.98 6545
PV ar30 2.76 2.58 1.00 1.43 2.07 3.30 5.90 6545
M2360 4.30 2.23 2.05 2.68 3.84 5.33 7.87 6545
PV ar360 2.75 1.41 1.42 1.84 2.38 3.21 4.90 6545
V P30 1.52 2.19 -0.02 0.33 0.87 1.84 5.25 6545
V P360 1.55 1.12 0.35 0.77 1.22 2.05 3.80 6545

Panel B reports correlations among estimates of risk-neutral and predicted market variance (M2
and PV ar), and the variance risk premium (i.e., the difference) at the monthly and annual horizons
(30 and 360 days).

EP30 EP360 M230 PV ar30 M2360 PV ar360 V P30

EP30 1.00 0.34 0.11 0.10 0.10 0.11 0.10
EP360 0.34 1.00 0.22 0.26 0.18 0.29 0.12
M230 0.11 0.22 1.00 0.93 0.85 0.82 0.90
PV ar30 0.10 0.26 0.93 1.00 0.85 0.91 0.67
M2360 0.10 0.18 0.85 0.85 1.00 0.91 0.69
PV ar360 0.11 0.29 0.82 0.91 0.91 1.00 0.56
V P30 0.10 0.12 0.90 0.67 0.69 0.56 1.00
V P360 0.06 -0.00 0.67 0.56 0.85 0.56 0.67
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Table 2: Predicting Realized Variance

This table compares realized variance forecasts from the heterogeneous autoregressive (HAR), risk-
neutral variance (M2), and fractionally integrated (FI) models. Panel A shows out-of-sample (OOS)
R2, at horizons ranging from monthly (T = 30 days) to annual (T = 360 days). The OOS R2

benchmark is average in-sample realized variance, which is 0.0260 annualized (16.1% volatility).
The last column shows the number of non-overlapping observations (NNObs) at each horizon in
the 1997 through 2021 sample.

Horizon HAR M2 FI NNObs
30 0.398 0.415 0.410 303
60 0.238 0.245 0.291 151
90 0.141 0.169 0.218 100
180 0.021 0.065 0.095 50
360 -0.082 -0.111 -0.048 24

Panel B shows the in-sample R2 values resulting from adjusting each model’s forecasts using linear
transformations that best fit realized variance at each horizon.

Horizon HAR M2 FI NNObs
30 0.439 0.426 0.422 303
60 0.324 0.273 0.310 151
90 0.255 0.203 0.252 100
180 0.154 0.125 0.170 50
360 0.060 0.066 0.103 24

Panel C reports pairwise correlations between the models’ forecasts at each horizon.

Horizon HAR-M2 HAR-FI FI-M2 NNObs
30 0.860 0.904 0.917 303
60 0.810 0.862 0.916 151
90 0.780 0.833 0.918 100
180 0.714 0.784 0.916 50
360 0.620 0.759 0.906 24
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Table 3: Correlations among Risk-Neutral Moments

Panel A shows correlations between risk-neutral moments of different orders—M2 (variance), M3
(skewness), M4 (kurtosis), M5, and M6—at monthly (30-day) and annual (360-day) horizons.

M230 M330 M430 M530 M630 M2360 M3360 M4360 M5360

M230 1.00 -0.93 0.91 -0.84 0.81 0.85 -0.44 0.83 -0.46
M330 -0.93 1.00 -0.92 0.93 -0.86 -0.77 0.53 -0.78 0.55
M430 0.91 -0.92 1.00 -0.95 0.97 0.70 -0.37 0.77 -0.43
M530 -0.84 0.93 -0.95 1.00 -0.96 -0.65 0.42 -0.72 0.48
M630 0.81 -0.86 0.97 -0.96 1.00 0.59 -0.33 0.69 -0.41
M2360 0.85 -0.77 0.70 -0.65 0.59 1.00 -0.67 0.95 -0.67
M3360 -0.44 0.53 -0.37 0.42 -0.33 -0.67 1.00 -0.65 0.96
M4360 0.83 -0.78 0.77 -0.72 0.69 0.95 -0.65 1.00 -0.70
M5360 -0.46 0.55 -0.43 0.48 -0.41 -0.67 0.96 -0.70 1.00
M6360 0.75 -0.71 0.78 -0.71 0.73 0.83 -0.55 0.96 -0.64

Panel B reports the correlations between third- and fourth-order risk-neutral moments, M3 (skew-
ness) and M4 (kurtosis), at monthly through annual horizons (30, 60, 90, 180, 360 days).

M330 M360 M390 M3180 M3360 M430 M460 M490 M4180

M330 1.00 0.96 0.92 0.81 0.53 -0.92 -0.90 -0.89 -0.86
M360 0.96 1.00 0.98 0.89 0.63 -0.87 -0.92 -0.92 -0.91
M390 0.92 0.98 1.00 0.94 0.71 -0.82 -0.88 -0.91 -0.92
M3180 0.81 0.89 0.94 1.00 0.86 -0.67 -0.75 -0.79 -0.85
M3360 0.53 0.63 0.71 0.86 1.00 -0.37 -0.44 -0.50 -0.60
M430 -0.92 -0.87 -0.82 -0.67 -0.37 1.00 0.97 0.94 0.87
M460 -0.90 -0.92 -0.88 -0.75 -0.44 0.97 1.00 0.98 0.94
M490 -0.89 -0.92 -0.91 -0.79 -0.50 0.94 0.98 1.00 0.98
M4180 -0.86 -0.91 -0.92 -0.85 -0.60 0.87 0.94 0.98 1.00
M4360 -0.78 -0.85 -0.87 -0.82 -0.65 0.77 0.86 0.91 0.97
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Table 4: Predicting the Expected Variance Premium

This table compares the fit of five models in predicting the expected variance premiums in equation
(24). The fit measure is model R2 based on recursive rolling regressions. The table shows percentage
R2 values for monthly to annual horizons (rows) for the five models (columns): representative log
utility (RLUVP) and the K = 1, 2, 3, 4 implied variance premium (IVP) models, which include K
regressors consisting of risk-neutral moments of orders 3, ...,K + 2. The null model for computing
R2 values is the historical mean of the variance premium, using the same recency weights as in the
IVP models. The last column reports the number of days in the model evaluation period spanning
1997 to 2021.

RLUVP IVP1 IVP2 IVP3 IVP4 Days
30 6.0 47.7 45.2 62.0 62.3 6293
60 6.6 56.8 54.2 68.4 70.0 6293
90 3.3 57.1 55.4 68.0 70.5 6293
180 -7.4 55.8 59.4 63.0 70.1 6293
360 -25.9 43.1 65.3 46.3 55.5 6293
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Table 5: Summary of Equity Premium Predictions

Panel A summarizes the equity premium estimates from the four implied equity premium (IEP)
models and from the representative log utility model (RLUEP) at monthly (30-day) and annual
(360-day) horizons. The IEP that uses K terms to approximate the pricing kernel at horizon h
days is IEPKh. The RLUEP at horizon h days is RLUEPh. Equity premiums are not annualized.
The columns show the mean (Mean), standard deviation (StdDev), and percentiles (P5, P25, P50,
P75, P95) of equity premiums for all 6,293 days from 1997 to 2021.

Mean StdDev P5 P25 P50 P75 P95 Days
RLUEP30 0.35 0.36 0.09 0.15 0.26 0.41 0.91 6293
IEP130 0.70 0.86 0.18 0.28 0.46 0.81 1.82 6293
IEP230 0.57 0.75 0.16 0.23 0.37 0.65 1.46 6293
IEP330 0.85 1.07 0.24 0.37 0.55 0.92 2.12 6293
IEP430 0.70 0.89 0.17 0.30 0.46 0.77 1.79 6293
RLUEP360 4.22 2.16 1.95 2.69 3.83 5.12 7.63 6293
IEP1360 8.20 5.03 3.92 5.01 6.72 10.09 15.48 6293
IEP2360 6.84 4.34 3.44 4.18 5.37 8.32 13.14 6293
IEP3360 9.48 5.59 4.58 6.25 7.81 10.77 18.46 6293
IEP4360 7.90 4.51 3.43 5.20 6.77 9.41 15.17 6293

Panel B reports out-of-sample R2 values of equity premium predictions from the IEP and RLUEP
models at horizons ranging from monthly (30 days) to annual (360 days). The last column shows
the number of non-overlapping observations (NNObs) at each horizon in the 1997 through 2021
sample.

Horizon RLU IEP1 IEP2 IEP3 IEP4 NNObs
30 0.58 -0.99 -0.22 -0.13 1.12 303
60 1.00 -1.33 -0.04 0.41 2.23 151
90 0.99 -2.23 -0.54 0.65 3.04 100
180 1.81 -0.24 2.02 6.97 8.74 50
360 -1.29 -2.40 0.64 8.71 9.15 24
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Table 6: Market Return Predictability Regressions

This table shows regressions of the realized market equity premium, EPh, the implied equity pre-
mium, IEP4h, the representative log utility equity premium, RLUEPh, and the variance premium,
V Ph, where h is the horizon in days and the regressors are lagged by h days. Panels A to E report
regressions for horizons h = 30, 60, 90, 180, 360 days. Hansen-Hodrick (1980) standard errors based
on a bandwidth of h − 1 days appear in parentheses. The “Observations” row shows the number
of days included in the regression. The “All” sample includes all days from 1997 through 2021,
whereas the “No Arb” sample excludes 61 days from September 19, 2008 to December 15, 2008.

Panel A: 30-Day Horizon

(1) (2) (3) (4) (5) (6)
EP30 EP30 EP30 EP30 EP30 EP30

IEP430 0.64 0.62 0.57 1.32*** 0.89 1.28
(0.51) (1.20) (0.77) (0.48) (1.29) (0.90)

RLUEP30 0.05 1.14
(2.90) (2.81)

V P30 0.03 0.02
(0.24) (0.26)

Observations 6,272 6,272 6,272 6,211 6,211 6,211
Sample All All All No Arb No Arb No Arb
R2

adj 0.014 0.014 0.014 0.039 0.040 0.039

Panel B: 60-Day Horizon

(1) (2) (3) (4) (5) (6)
EP60 EP60 EP60 EP60 EP60 EP60

IEP460 0.68 0.59 0.69 1.31*** 1.11 1.43*
(0.60) (1.26) (0.92) (0.49) (1.21) (0.87)

RLUEP60 0.22 0.50
(2.49) (2.49)

V P60 -0.01 -0.12
(0.47) (0.47)

Observations 6,251 6,251 6,251 6,190 6,190 6,190
Sample All All All No Arb No Arb No Arb
R2

adj 0.025 0.025 0.025 0.063 0.063 0.064
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Table 6 (continued): Market Return Predictability Regressions

Panel C: 90-Day Horizon

(1) (2) (3) (4) (5) (6)
EP90 EP90 EP90 EP90 EP90 EP90

IEP490 0.70 0.70 0.72 1.46*** 1.38 1.71***
(0.70) (1.25) (0.98) (0.35) (1.05) (0.60)

RLUEP90 -0.00 0.21
(2.35) (2.38)

V P90 -0.03 -0.35
(0.67) (0.62)

Observations 6,230 6,230 6,230 6,169 6,169 6,169
Sample All All All No Arb No Arb No Arb
R2

adj 0.032 0.032 0.032 0.101 0.101 0.103

Panel D: 180-Day Horizon

(1) (2) (3) (4) (5) (6)
EP180 EP180 EP180 EP180 EP180 EP180

IEP4180 1.03** 1.25 1.43** 1.46*** 1.54 2.00***
(0.48) (1.43) (0.58) (0.42) (1.38) (0.48)

RLUEP180 -0.54 -0.21
(2.81) (2.84)

V P180 -1.18 -1.53
(1.26) (1.33)

Observations 6,167 6,167 6,167 6,106 6,106 6,106
Sample All All All No Arb No Arb No Arb
R2

adj 0.080 0.081 0.089 0.122 0.122 0.136

Panel E: 360-Day Horizon

(1) (2) (3) (4) (5) (6)
EP360 EP360 EP360 EP360 EP360 EP360

IEP4360 1.12** 1.40 1.97*** 1.23** 1.47 2.14***
(0.50) (1.85) (0.68) (0.57) (1.86) (0.71)

RLUEP360 -0.65 -0.60
(3.45) (3.47)

V P360 -4.99 -5.25
(3.34) (3.54)

Observations 6,043 6,043 6,043 5,982 5,982 5,982
Sample All All All No Arb No Arb No Arb
R2

adj 0.084 0.085 0.143 0.083 0.084 0.146
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Figure 1: The Estimated Variance Premium

Panel A shows predicted variance from the fractionally integrated model and risk-neutral variance
from option prices at the monthly (30-day) horizon. The data are daily from 1996 through 2021.
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Figure 1 (continued): The Estimated Variance Premium

Panel B shows predicted variance from the fractionally integrated model and risk-neutral variance
from option prices at the annual (360-day) horizon. The data are daily from 1996 through 2021.
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Figure 1 (continued): The Estimated Variance Premium

Panel C shows annualized variance premiums at the monthly (30-day) and annual (360-day) hori-
zons. Each variance premium is the difference between risk-neutral variance and predicted variance
from the fractionally integrated model at each horizon. The data are daily from 1996 through 2021.
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Figure 2: Growth-Optimal Portfolio Weights

Panel A shows the weights on the stock market in the growth-optimal (GO) portfolio based on
the risk-free asset, the stock market, and K − 1 market-related securities. The market-related
securities have excess returns equal to the market excess return raised to the kth power, where
k = 2, ...,K. The figure shows the GO weight on the market for implied risk premium (IRP)
models with K = 1, 2, 3, 4 risky assets. Weight estimates come from recursive regressions of the
variance premium on K risk-neutral moments, as in equation (11). The data are daily from 1997
through 2021.
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Figure 2 (continued): Growth-Optimal Portfolio Weights

Panel B shows the weights on all (K = 4) risky assets in the growth-optimal portfolio based on
the risk-free asset, the stock market (k = 1), and three market-related securities (k = 2, 3, 4). The
market-related securities have excess returns equal the market excess returns squared (k = 2),
cubed (k = 3), and raised to the fourth power (k = 4). Weight estimates come from recursive
regressions of the variance premium on four risk-neutral moments with degrees three, four, five,
and six, as in equation (11). The data are daily from 1998 through 2021.
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Figure 3: Growth-Optimal Pricing Kernel

Panel A shows growth-optimal pricing kernels based on sample median weights on the risk-free
asset, stock market, and K−1 market-related securities. The market-related securities have excess
returns equal to the market excess return raised to the kth power, where k = 2, ...,K. The figure
shows the median GO pricing kernel for implied risk premium (IRP) models with K = 1, 2, 3, 4
risky assets. Weight estimates come from recursive regressions of the variance premium on K risk-
neutral moments, as in equation (11). Median weights are based on daily data from 1997 through
2021. The representative log utility (RLU) kernel is a special case of the K = 1 kernel with a unity
weight on the stock market and zero weights on other securities.
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Figure 3 (continued): Growth-Optimal Pricing Kernel

Panel B shows growth-optimal (GO) pricing kernels with weights on the risk-free asset, the stock
market, and K − 1 market-related securities on May 25, 2010. On this date, the monthly expected
equity premium was at the 95th percentile for the sample. The market-related securities have
excess returns equal to the market excess return raised to the kth power, where k = 2, ...,K. The
figure shows the GO pricing kernel for implied risk premium (IRP) models with K = 1, 2, 3, 4 risky
assets. Weight estimates come from recursive regressions of the variance premium on four risk-
neutral moments with degrees three, four, five, and six, as in equation (11). The representative log
utility (RLU) kernel is a special case of the K = 1 kernel with a unity weight on the stock market
and zero weights on other securities.
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Figure 4: The Implied Equity Premium and Martin’s Lower Bound

This figure shows the implied equity premium (IEP) and Martin’s (2017) lower bound on the equity
premium at the one-year (360-day) horizon from 1997 to 2021. The one-year IEP is based on the
fourth-order (K = 4) approximation of the growth-optimal pricing kernel, IEP4360, in equation (9).
The lower bound is the representative log utility equity premium, RLUEP360, which is a special
case of equation (9) with w1,t = 1 and wk,t = 0 for k > 1. The data are daily from 1997 through
2021.
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Figure 5: Implied Equity Premiums

Panel A shows one-year (360-day) implied equity premiums (IEPs) for models that approximate
the growth-optimal pricing kernel with degrees K = 1, 2, 3, 4. The data are daily from 1997 through
2021.
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Figure 5 (continued): Implied Equity Premiums

Panel B shows monthly (30-day) implied equity premiums (IEPs) for models that approximate the
growth-optimal pricing kernel with degrees K = 1, 2, 3, 4. The data are daily from 1997 through
2021.
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Figure 6: Decomposing the Implied Equity Premium

This figure shows components of the implied equity premium (IEP) at the one-year (360-day)
horizon. The one-year IEP is based on the fourth-order (K = 4) approximation of the growth-
optimal pricing kernel, IEP4360, in equation (9). The components are the four terms (k = 1, 2, 3, 4)
in equation (9), where k is the exponent applied to the market excess return. The data are daily
from 1997 through 2021.
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Figure 7: Term Structure of the Implied Equity Premium

This figure shows the level and slope of the term structure of the implied equity premium (IEP).
The level is IEP4360 in equation (9) based on the fourth-order (K = 4) approximation of the growth-
optimal pricing kernel. The slope is the difference between the annualized one-year and one-month
IEPs divided by the difference in these maturities: (365/360× IEP4360 − 365/30× IEP430) /((360−
30)/365). The data are daily from 1997 through 2021.
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A Recovery in a Two-State Model

In a simple setting, I show how to use empirical estimates of the variance premium and

risk-neutral skewness to find the true equity premium and pricing kernel. As in the main

model, available assets include a risk-free security with a gross rate of Rf , a stock market

with an excess return of R̃m, and options on the market with a continuum of strike prices.

I assume that there are no arbitrage opportunities.

The model has two states: state H has high market excess returns, R̃m,H > 0, and state L

has low market excess returns, R̃m,L < 0. State H occurs with probability 0 < p < 1. These

restrictions on return realizations and probabilities are necessary to ensure the absence of

arbitrage. I parameterize return realizations so that the true equity premium is µ and return

volatility is σ. This implies that R̃m,H = µ+p−0.5 (1− p)0.5 σ and R̃m,L = µ−p0.5 (1− p)−0.5 σ.

Negative excess returns in the low state implies an upper bound on the market Sharpe ratio:

µ/σ < p0.5 (1− p)−0.5.

R̃m

R̃m,L < 0

1− p
1− q

R̃m,H > 0

p
q

The econometrician does not observe the equity premium, µ, but has useful information

about it. She observes the second moment of market excess returns, ER̃2
m, which is like

empirical market variance. She effectively observes all risk-neutral moments of excess market

returns, E∗R̃j
m for j = 1, ...,∞, because they are weighted sums of prices of market options.

In this simple model, observation of risk-neutral variance and skewness, E∗R̃2
m and E∗R̃3

m,

will be sufficient to recover the physical return distribution.

By the no-arbitrage assumption, the growth-optimal portfolio consisting of the risk-free

asset and stock market is the reciprocal of the pricing kernel, m =
(
Rf + wR̃m

)−1
, that

prices these two assets. The two parameters are Rf , which is known, and w, which is the

unknown weight on stocks. In this two-state model with no arbitrage, any pricing kernel

that prices the risk-free rate and the stock market must also price all options based on the

market because the former assets span the latter.
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One can explicitly compute risk-neutral probabilities and pricing kernel values for the

two states in terms of the unknown equity premium and market variance. Because the

risk-neutral excess return of the market is zero, the risk-neutral probabilities of the high

and low states must be q = − R̃m,L

R̃m,H+R̃m,L
> 0 and 1 − q =

R̃H,L

R̃m,H+R̃m,L
> 0, respectively.

Because the pricing kernel is proportional to the ratio of risk-neutral to physical prob-

abilities, its values in the high and low states must be Rf

(
Rf + wR̃m,H

)−1
= q/p and

Rf

(
Rf + wR̃m,L

)−1
= (1− q) / (1− p), respectively. From the pricing kernel definition,

this implies that the unknown weight on stocks is:

w = − Rfµ

R̃m,LR̃m,H

.

This weight on stocks is positive, w > 0, because −R̃m,L > 0.

I now show how to estimate w and thus µ from option prices and physical return variance.

The first step is to express observable quantities in terms of the unknown parameters of the

physical return distribution. Risk-neutral variance is:

E∗R̃2
m = qR̃2

m,H + (1− q)R̃2
m,L

= −R̃m,LR̃m,H ,

which is positive because −R̃m,L > 0. Risk-neutral skewness is:

E∗R̃3
m = qR̃3

m,H + (1− q)R̃3
m,L

= −R̃m,LR̃m,H

(
R̃m,H + R̃m,L

)
.

The variance premium is:

E∗R̃2
m − ER̃2

m = −R̃m,LR̃m,H −
(
σ2 + µ2

)
=

[
p0.5 (1− p)−0.5 − p−0.5 (1− p)0.5

]
µσ − 2µ2.

2



The second step is applying the variance premium equation (11) in the main model to

the case here with a single parameter, w, in the pricing kernel and solving for w to obtain:

w =
E∗t R̃2

m − ER̃2
m

−R−1f E∗t R̃3
m

= − Rfµ

R̃m,LR̃m,H

,

which is the same as the true value for w.

The third and last step is applying the equity premium equation (10) in the main model

to the linear pricing kernel with slope w to obtain:

ER̃m = R−1f wE∗R̃2
m

= R−1f

Rfµ

R̃m,LR̃m,H

(
R̃m,LR̃m,H

)
= µ.

This last equation shows that the option-implied equity premium equals the true equity

premium in this simple model.

Recovery of the true pricing kernel, m, and equity premium, µ, is exact for any physical

distribution parameters (p, µ, σ) that satisfy the no-arbitrage assumption. In particular, the

recovery procedure works regardless of the signs of the variance premium and risk-neutral

skewness. The variance premium is positive whenever p > 0.5 + 0.5
[
µ2 (µ2 + σ2)

−1
]0.5

or

p < 0.5 − 0.5
[
µ2 (µ2 + σ2)

−1
]0.5

. The former condition is satisfied for reasonable equity

premium and volatility values, such as µ = 0.05 and σ = 0.15, because stocks outperform

Treasuries in most years (p ≈ 2/3). The conditions for negative risk-neutral skewness are

the same as those for a positive variance premium. Since these two quantities always have

opposite signs, the pricing kernel parameter, w, which is the negative of the ratio of these

quantities, is always positive. In the empirically relevant case, the variance premium is

positive, risk-neutral skewness is negative, and w is positive.
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B Measuring Option Prices and Market Variance

B.1 Option Prices

I compute risk-neutral moments of market returns from SPX option prices using Option-

Metrics data. I adopt many data filtering methods from Chang et al. (2013) and Martin

(2017) to eliminate securities with low liquidity and unreliable prices. I augment these meth-

ods using a customized no-arbitrage filter for options with extreme strike prices, which are

important for higher-order risk-neutral moments.

As in Martin (2017), I remove SPX options with:

� maturities less than 7 days or greater than 549 days

� duplicated data

� p.m. settlement

� non-positive closing bid

� quarter-end expiration dates

� non-null expiration indicator

� arbitrage violations relative to the SPX index

� higher midpoint price among put and call for each date, maturity, and strike price.

The minimum price filter restricts the sample to out-of-the-money options. For each

maturity, I set the SPX futures price as the lowest strike price such that an SPX put exceeds

the value of an SPX call by one penny.20 I also drop options with open interest less than

1000 contracts to ensure sufficient liquidity. I drop options with zero or missing implied

volatility, which violate arbitrage bounds.

20This definition is almost perfectly correlated with the futures price implied by futures-spot parity.
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I drop a few options with glaring data errors to reduce outliers, though these omissions

have little substantive impact on the results. Based on sudden changes in data coverage and

extreme illiquidity, I drop all options with the following seven date-maturity combinations

and nine contracts with the following date-maturity-strike-type combinations:

Date Maturity Strike Type
1998-03-24 1999-03-20 All Both
1998-09-21 1999-09-18 All Both
1999-09-20 2000-09-16 All Both
1999-09-21 2000-09-16 All Both
1999-09-22 2000-09-16 All Both
2007-06-19 2008-06-21 All Both
2001-09-17 2002-06-22 1900 Call
2001-09-18 2002-06-22 1900 Call
2001-09-19 2002-06-22 1900 Call
2001-09-20 2002-06-22 1600 Call
2001-09-20 2002-06-22 750 Put
2001-09-21 2002-06-22 800 Put
2006-01-19 2006-12-16 1900 Call
2008-10-10 2009-09-19 1525 Call
2011-06-06 2012-06-16 3000 Call

I design a set of filters to ensure sufficient information for the computation of risk-neutral

moments at each horizon. For each date-maturity pair, I require at least:

� a moneyness (i.e., strike/index) range from 95% to 105%

� two calls

� two puts

� five options of any type

The minimum moneyness range drops 0.8% of date-maturity pairs and the last three re-

quirements drop only 0.1% of pairs.

Whereas Chang et al. (2013) drop options with bid-ask midpoints of less than $0.375

(3/8), I drop options with extreme moneyness until options with adjacent prices differ by at

least a penny. This filter eliminates most remaining arbitrage violations and illiquid options.
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B.2 Risk-Neutral Moments

As in Chang et al. (2013) and Martin (2017), I compute risk-neutral moments based on

observed option prices and strike prices for each date and maturity. I use a discrete ap-

proximation of the integral in equation (20) based on the range of available strike prices

supplemented using extrapolated option prices, following Chang et al. (2013). I assume

options with strikes outside the available range of moneyness have implied volatility equal

to a trend-line extrapolation of the volatility skew based on the three options with the clos-

est strike prices. I estimate the trend-line parameters by minimizing the sum of absolute

deviations from the three closest strikes. I constrain the absolute value of the slope to be

no greater than 1.0, which affects almost no data. I only extrapolate insofar as the range of

available moneyness is less than two standard deviations above and below the futures price.

I also winsorize the implied volatility range at 5% and 100% and the moneyness range at 1%

and 300% of the futures price, though these limits rarely bind. This extrapolation procedure

creates an additional 1.8% of options beyond the original cleaned data.

As in Martin (2017) and related studies, I must interpolate between the irregular ma-

turities of the resulting risk-neutral moments to obtain the desired uniform maturities of

monthly, bimonthly, quarterly, and annual because option expiration dates occur at fixed

times within months. I design an interpolation procedure to maximize data availability and

minimize likely errors. First, I set the raw odd (even) risk-neutral moments to missing for

date-maturity pairs with non-negative (non-positive) values, which would be inconsistent

with theory and prior evidence. This filter only affects 45 third-order moments (0.1%) and

182 fifth-order moments (0.5%) out of 51,013 date-maturity pairs; and it affects no even

moments. I also set a handful of third- and fifth-order moments that exceed a very small

negative (annualized) value, -0.0001, to missing.

Second, for each moment, date, and irregular maturity, I fill in missing daily moments

using adjusted lagged weekly moments. To this end, I partition all moments into six maturity

groups with cutoffs defined by the uniform maturities of 30, 60, 90, 180, and 360 days,

creating groupings of [7,30], [31, 60], [61, 90], [91, 180], [181, 360], and [361, 549] days. For

each group, date, and moment, I estimate the lagged weekly moment using a rolling median

of the moment’s non-missing values on days -7 to -1. I fill in missing weekly medians for the

longest horizons, e.g., [361, 549], using values from the next longest horizon, e.g., [181, 360].

I then apply this procedure to the shortest horizons with missing weekly data using the next

shortest horizon. These missing data procedures apply to fewer than 0.7% of observations
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for all weekly moments.

Third, to obtain values for standardized maturities, I interpolate between adjacent hori-

zon groups based on the local slope of the term structure of the risk-neutral moment. For

example, I estimate the third risk-neutral moment at a 30-day maturity using a [1/3, 2/3]

weighted average of the third risk-neutral moments with 10-day and 40-day maturities. I

apply this interpolation to the raw daily moments and to the lagged weekly moments, fill-

ing in any remaining missing values of weekly moments with most recently available values.

Lastly, I fill in any missing daily moments using adjusted weekly moments. The adjusted

weekly moment is the unadjusted weekly moment plus the median difference between the

daily and weekly moments across all horizons for which both are nonmissing. I apply this

same interpolation procedure to OptionMetrics’ risk-free rates with irregular maturities to

obtain risk-free rates with standardized maturities.

B.3 ETF Variance

The RV estimator is the sum of squared log SPY ETF returns over 78 intraday intervals,

where 78 is the number of 5-minute periods in regular exchange trading hours. The final RV

estimator is the average of 10 sub-sampled RV estimators based on 10 staggered sets of 78

non-overlapping intervals. Each set of 78 return intervals is based on 79 trade prices that are

equally spaced in business time—i.e., equal numbers of trades—throughout regular trading

hours. Thus, the 10 RV estimators use a total of 790 prices equally spaced in business time.

The first RV estimator uses prices 1, 11, 21, ..., 781, the second uses prices 2, 12, 22, ..., 782,

and the tenth uses prices 10, 20, 30, ..., 790.

For these estimators, I use only trades that satisfy the following standard conditions,

applied in order below:

� price is positive

� quantity is positive

� time must be between 9:30 a.m. and 4:00 p.m. Eastern time

� correction code is “00”

� condition code is not 1, 4, 7, 8, 9, A through D, G, H, K, L, N, P, R, S, U through W,

Y, or Z
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� exchange is the most active for SPY on that day

� price must be within the range of the ETF’s daily low and high

I aggregate all trades by transaction time and use the median trade price for each time

as the price. I keep only trades from the most active exchange on each day. I drop trades

with extreme reversals as defined an absolute return exceeding five times the 50-observation

rolling average. The number of unique transaction times is the basis for the partition into

790 prices equally spaced in business time.

I fix two glaring data errors in trade prices. I obtain the daily low and high prices from

the Center for Research in Securities Prices (CRSP) database. On March 31, 1997, I use high

and low prices from Yahoo! Finance because the CRSP high and low prices are incorrect.

On May 12, 1999, I set SPY prices in TAQ that are below the daily CRSP low to the index

low for trades before 12 noon and to the previous valid trade price for trades after noon.

These changes improve aesthetics by reducing outliers but have no substantive impact on

the results.
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