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Abstract

We document that interactions with manipulated AI can distort the development
of human capital in opioid prescription contexts. Physicians in our sample adopted
electronic health record software from a list of federally certified companies in 2011.
Between 2016 and spring 2019, one company secretly embedded a biased AI reminder
system to promote extended-release opioid sales. Affected physicians not only in-
creased opioid claims relative to the control group during the treatment window but
also maintained a higher propensity for prescriptions even after the removal of the bi-
ased function. This long-term distortion of human capital relies on the unconsciousness
of AI biases and does not occur following other explicit promotions, such as pharmaceu-
tical detailing payments. Using machine-learning algorithms, we quantify that human
capital distortion explains 54% of the treatment effects in a physician decision model
with dynamic learning. Experience with opioids, along with caution regarding elder
patients, mitigates the distortion.
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1 Introduction

The rapid advancement of artificial intelligence (AI) has sparked a growing interest in under-

standing and mitigating potential risks associated with this innovative technology. Existing

literature highlights concerns such as labor displacement (Acemoglu and Restrepo, 2018,

2020; Babina et al., 2022), product market concentration (Babina et al., 2024; Calvano

et al., 2020), and social inequalities (Bartlett et al., 2022; Fuster et al., 2022; Howell et al.,

2024). In response to these challenges, the European Union (EU) has introduced the AI Act,

heralded as the first-ever comprehensive legal framework to harness the power of AI systems

in a safe and ethical manner. This risk-based regulatory approach calls for further efforts in

assessing other risk areas in AI usage.

In this paper, we uncover a unique risk aspect and argue that human capital can be dis-

torted through interactions with AI systems. With recent advancements in machine learning

techniques, AI predictions now commonly assist human decision-making processes (Agrawal

et al., 2019). We hypothesize that human capital will adjust through collaboration with

AI: these predictions will not only affect the current decision, but also alter workers’ habits

when similar tasks emerge in the future. However, this “learning-from-AI” phenomenon is

dangerous as predictions may have errors and biases. In a worse scenario, our empirical set-

ting illustrates a situation where developers deliberately manipulate these predictions. We

show that not only professionals with expertise are vulnerable to these manipulations, but

these AI-generated mistakes are also reinforced by user habit formation. As a result, merely

removing or fixing the biased algorithms cannot eliminate the biased practices by the agents.

Empirically documenting this effect presents several challenges. First, pinning down the

specific influences of AI on human behaviors is difficult due to substantial heterogeneity in

human-AI interactions across tasks, agents, and algorithms (e.g Kleinberg et al., 2018; An-

gelova et al., 2023). Even in similar tasks, a single worker may face various recommended

decisions across scenarios, making it challenging to identify alterations in habits consistently.

Second, an essential step in this study is to obtain the long-term counterfactual of worker

behaviors without further AI influence after their initial interaction. However, workers en-

dogenously adopt and abandon AIs based on their recent experiences. As AI becomes a

1



“general-purpose technology” (Bresnahan and Trajtenberg, 1995), AI adoption is almost an

irreversible decision and workers rarely suspend usage, particularly due to exogenous reasons.

We address these challenges in the context of opioid prescriptions by physicians assisted

with clinical decision support systems (CDSSs). CDSS, integrated within EHR systems,

uses algorithms on patient data to generate personalized treatment guidance. CDSS can

remind clinicians of medical decisions such as prescribing, diagnosing, and testing. This

context is economically important for understanding the risks associated with AI. Most

healthcare AI systems, including CDSS, are categorized as “high-risk” under the EU AI Act,

requiring additional oversight for transparency and robustness. Besides, CDSS is widely

used in healthcare provider settings. For example, Jing et al. (2019) show that it is utilized

between 71.8% and 100% in primary care settings.

The background of our study is that the Affordable Care Act created financial incentives

for physicians to use electronic health record (EHR) software from a list of certified com-

panies in 2011. However, from July 2016 to the Spring of 2019, one major EHR company,

Practice Fusion, secretly embedded a pain clinical decision support (“Pain CDS”) function-

ality in its EHR to promote the sales of Purdue Pharma’s extended-release opioids (EROs) in

an “unbranded effort.” This setting provides the following empirical advantages. First, the

AI assistance (i.e., Pain CDS) was manipulated to unanimously recommend opioid prescrip-

tions regardless of medical necessity and potential abuse risks but it appeared to healthcare

providers as unbiased medical information. This homogeneity allows us to measure an in-

tuitive and single-direction impact on human behaviors. Second, our identification strategy

follows a simple difference-in-differences (DID) design, leveraging physician-level annual opi-

oid prescription data from 2013 to 2021. Treated physicians adopted Practice Fusion in 2011,

and we can compare their behaviors to other incentive program participants after the shock.

Most importantly, our sample spans the period when the bias alert was removed (i.e., 2019

– 2021) so that we can evaluate the long-term distortions on human capital.

We begin with a conceptual framework to guide our quantitative analysis. In the model,

physicians make decisions on opioid prescriptions by forming beliefs about the underlying

necessity. This belief is jointly decided by a prior formed through observing patient charac-

teristics and an update due to potential pain alerts. Furthermore, we introduce a dynamic
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learning mechanism where the periodic prior belief gradually leans towards more opioid pre-

scriptions, i.e., a long-term distortion channel, after each interaction with the manipulated

CDSS. The main prediction is that the treatment group will prescribe more LA opioids rel-

ative to the control group from 2016 to 2021. For example, in the year of 2018 (the third

treatment period), a treated physician suffers both direct manipulation and accumulated

biases in his prior due to two periods of learning from AIs. Empirically, we estimate the av-

erage treatment effects using regression methods to confirm the existence of both channels.

This stylized model also allows us to quantitatively decompose short-term and long-term

distortions using a machine-learning algorithm.

We first confirm that in the treatment window from 2016 to 2018, physicians having

adopted Practice Fusion exhibit a significantly higher propensity of prescribing long-acting

(LA) opioids, i.e., the category encompassing all Purdue Pharma’s EROs, compared to the

control group. We characterize this propensity through various measures, including number

of claims, costs of drugs, days of supply and the fraction of LA opioids over all types of opioid

claims. The coefficients are not only highly statistically significant (t-statistics from 2.6 to

4.5) but also economically substantial. Affected physicians increase their annual number of

LA claims by 5.9%, generating an aggregated cost of approximately $2.5 million every year

in our sample. These results imply that even professionals with expertise follow biased AI

recommendations and cannot distinguish intentional manipulations embedded in the system.

If the findings were purely driven by the transient manipulation, we would not observe

any significant differences between the treatment and control groups after the removal of the

AI manipulation. However, in the post-treatment window from 2019 to 2021, we document

evidence of human capital distortion across all different measures: affected physicians con-

tinue to prescribe 11.6% more LA opioid claims relative to the control group. This long-term

distortion costs Medicare Part D $5.0 million every year in our sample, but also generate

long-term real healthcare consequences for beneficiaries. For example, in each 3-digit zip

code area, a 1% increase in the number of Practice fusion adopters is associated with 0.48%

more Medicare beneficiaries requiring treatment for opioid abuse from 2020 to 2021. To

establish the generality of our results, we also measure the number of hospital visits due to

opioid overdose using a database covering 43 million privately-insured individuals. Consis-
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tent with the findings from Medicare beneficiaries, a 1% increase in the number of Practice

Fusion adopters in an MSA is associated with 0.131% more overdose payments in the outpa-

tient setting and 0.133% in the inpatient setting by private payers. Equivalently, this implies

that one additional increase in the number of treated physicians from the mean leads to an

increase of $40,000 outpatient payments and $88,000 inpatient payments.

We confirm the result robustness by using alternative empirical specifications and placebo

tests with regulated medications not promoted by Practice Fusion. We also estimate the co-

efficient dynamics across all calendar years to characterize the time series of impacts. Sup-

porting the parallel trend assumption, the two groups exhibit no significant differences before

2015. When the pain alert was active, affected physicians gradually increased LA opioid us-

age over the years. After 2019, this trend flattens, but the treatment group still maintains

a significantly higher propensity for opioid prescriptions. This pattern reinforces the key

assumption in our conceptual framework that each periodic interaction with manipulated

CDSS will repeatedly accumulate belief biases.

Furthermore, AI manipulation has the potential to distort human capital beyond the

scale of traditional financial incentives. Given that Purdue Pharma’s public image became

increasingly negative in the period of our analysis, we argue that the unawareness of AI

manipulation plays a unique role in habit formation. To show this, we focus on the alterna-

tive group of physicians having financial relationships with Purdue Pharma, who explicitly

received in-kind payments from the company. Purdue Pharma suspended these detailing

activities also in 2019, coinciding with the removal of the pain alert. In stark contrast,

recipients exhibit a significantly lower volume of LA claims compared to the control group

post-payment suspension, displaying no long-lasting persistence in prescriptions. This find-

ing aligns with Purdue Pharma’s motivation for contracting with Practice Fusion, claiming

that direct EROs promotions were hindered by providers’ political pressure. Instead, physi-

cians are unconscious of the bias in AI predictions and perceive the recommendations as

optimally generated from real data. Through collaborating with the EHR, physicians grad-

ually update more favorable beliefs about the benefit-risk profile of EROs over time, leading

to an inclination towards long-term prescriptions.

Lastly, we use a machine-learning algorithm built upon Nie and Wager (2021) to esti-
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mate the economic magnitude of long-term belief distortion within our conceptual framework.

This algorithm uses the prescription probability of LA opioids over all claims as the outcome

variable. During 2016 to 2018, it can decompose the aggregate treatment effects for each

affected physician into components attributed to direct CDSS manipulation and long-term

belief distortions. In the data, a typical treated physician has a higher prescription probabil-

ity of 2.3 bps, or 9.5% of the unconditional average. The predicted prescription probability

by our algorithm closely matches this magnitude, with an average treatment effect of 2.4

bps. We generate counterfactual prescription probabilities assuming no long-term distortion

or that belief distortion does not accumulate after more interactions with biased AI. The

treatment effect will decrease by 54% (to 1.1 bps) in the first case and by 17% (to 2.0 bps) in

the second case. These magnitudes underscore the importance of human capital distortion

in explaining the observed prescription changes.

Our algorithm also allows us to study the heterogeneity of treatment effects by estimating

them as a function of observed characteristics. We hypothesize and test two channels through

which affected physicians are more robust to AI biases. First, physicians with more previous

experience in LA opioid usage are more likely to make decisions based on their expertise,

and less likely to be influenced by AI recommendations. For instance, our algorithm predicts

that a treated physician without any previous LA opioid usage will have larger responses

(0.023% v.s. 0.017%) to direct manipulation in 2016. Second, our algorithm shows that

average patient age of each physician has the highest feature importance in determining

treatment effect heterogeneity. Intuitively, physicians who interact with senior patients are

more cautious about the potential opioid side-effects. In terms of magnitudes, the high

patient age group has a net treatment effect of 0.9 bps based on prescription probability,

roughly 30% of the effect of the low-age group (3.2 bps).

2 Related Work

This paper closely relates to the literature on the potential risks of AI adoption. Mostly re-

lated is the literature on the labor market implications of artificial intelligence, including but

not limited to Acemoglu and Restrepo (2018), Autor and Salomons (2018), Acemoglu and
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Restrepo (2020), Acemoglu and Restrepo (2022), and Babina et al. (2022). Instead of focus-

ing on labor share, composition or wage, we study the development of human capital through

AI interactions. On this end, existing literature focuses on worker skills across various tasks

that are exposed to AI replacements or compatible with AI capacities (Brynjolfsson et al.,

2018; Felten et al., 2018; Webb, 2019; Acemoglu et al., 2022). Our paper differs as a “within-

task” analysis that studies how working with AI will change the long-term performance of

professionals with specific skills. Our empirical results echo the theoretical prediction in

Acemoglu (2021). He argues that AI assistance will diminish workers’ understanding of au-

tomated tasks, which in turn reduces the productivity in their specialized fields requiring

human judgements. Instead, we document that agents will reinforce the biases and errors in

algorithms in other settings even without further AI recommendation.

Also related is the impact of AI adoption on consumer welfare. Algorithms may unin-

tentionally amplify biases embedded in unrepresentative training samples, creating fairness

concerns (Bartlett et al., 2022; Cowgill and Tucker, 2019; Fuster et al., 2022; Howell et al.,

2024). Moreover, AI technology may give rise to superstar firms (Babina et al., 2024) and

allow sellers to implicitly coordinate in price settings (Calvano et al., 2020), generating con-

cerns over the monopoly power of companies. We document the costs of AI from a different

perspective: firms can deliberately manipulate the predictions, exploiting humans’ trust on

AI, to achieve specific goals. Even professionals with expertise will have a hard time figuring

out the manipulation. This manipulation ultimately hurts the welfare of customers and even

endangers their lives.

Our work also adds to the literature of understanding the role of information technologies

in the healthcare industry. For discussion and overview, see Bronsoler et al. (2022) and Dra-

nove and Garthwaite (2022). Examples of CDSS benefits include reducing adverse medical

events (Hydari et al., 2019), attenuating racial biases in healthcare delivery (Ganju et al.,

2020), and avoiding high-cost orders (Doyle et al., 2019). Closely related is Agarwal et al.

(2023). The authors document that professional radiologists do not fully capitalize on the

potential gains from AI assistance due to deviations from Bayesian belief updating. Radi-

ologists may underweight the AI’s information relative to their own signals. In their work,

the provision of AI assistance will not gradually change the acquisition and interpretation of
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these prior signals by the professionals. Our work complements theirs by documenting how

experience with AI can change the long-term beliefs of professionals, which can dynamically

affect the deviations documented in their paper. Lastly, this paper falls into the broad lit-

erature comparing human decisions to algorithm-based recommendations in tasks such as

diagnosing (Mullainathan and Obermeyer, 2022), judging (Kleinberg et al., 2018; Angelova

et al., 2023), asset management (D’Acunto et al., 2019; Rossi and Utkus, 2020), and financial

analysts (Cao et al., 2021; Coleman et al., 2022; Grennan and Michaely, 2020).

3 Institutional Details and Data

3.1 Clinical Decision Support Systems

Clinical Decision Support Systems (CDSS) are AI tools that can be either rule-based expert

systems or machine learning (ML)-based systems. Rule-based AI replicates the decision-

making of domain experts in various fields. For example, physicians specializing in knee

replacement may develop CDSS with customized “order sets” to optimize treatment plans,

including lab tests, medication, patient instructions, surgical instruments, and home-care

procedures. Each aspect of the order set may include optional or alternative steps to address

expected care variations. In practice, users (e.g., physicians and nurses) will receive reminders

and recommendations during the whole patient care procedure (Sloane and Silva, 2020).

Instead of relying on expert-generated rules, ML-based systems utilize statistical algorithms

to generate strategies, by processing data such as doctor notes and scan images. For example,

radiologists at Geisinger Healthcare in Pennsylvania used a convolutional neural network to

analyze head CT scans. This algorithm greatly improves the accuracy and reduces the

handling time for detecting intracranial hemorrhage (Arbabshirani et al., 2018).

Both rule-based and ML-based AIs are complex. It is challenging to verify whether they

operate as intended and ensure their functions are safe and optimal for current medical care

(Sloane and Silva, 2020). Consequently, fraud and misinformation in AI-enabled healthcare

software are significant concerns. For instance, software developers may exaggerate the al-

gorithm’s capabilities and overstate its clinical effectiveness. IBM claims that Watson for
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Oncology can recommend cancer treatments to doctors based on algorithms trained by vast

clinical data. Instead, the recommendations are actually derived from laborious human input

(Ross and Swetlitz, 2017). Alternatively, physicians may deliberately choose one synonym

over another in AI-based systems for more reimbursement or prescribing regulated medica-

tions (Cerrato and Halamka, 2020; Finlayson et al., 2019). As a result, government agencies

are cautiously developing regulatory frameworks to promote innovation in this space. In

the U.S., before the Food and Drug Administration approved the marketing of the first-ever

autonomous AI-based diagnostic system in 2018, it established the Digital Health Software

Precertification program, which assesses a firm’s underlying quality in ensuring software

products meet safety and effectiveness standards. In Europe, the EU AI Act categorizes

medical software used to diagnose patients, make therapeutic decisions, and monitor physi-

ological processes as high-risk AIs, subjecting them to additional regulatory requirements.

Our empirical setting focuses Practice Fusion’s CDSS, which is a rule-based AI, allowing

us to directly identify the manipulation generated by the system. Practice Fusion was an

EHR company founded in 2005. At one point, it was named the top EHR for customer

satisfaction among primary care providers and ranked No. 1 for value among ambulatory

professionals. Investors including Kleiner Perkins Caufield & Byers made a $70 million

Series D investment in September 2013. This new round valued the company at around

$700 million, making it one of the largest digital health startups at the time.1 Practice

Fusion’s EHR provides clinical decision support from various aspects, including generating

differential diagnoses based on patient symptoms, sending notifications for necessary tests

during workflows, and issuing prescribing alerts for drug history, drug-drug interactions,

allergies, compliance, and drug dosage. Practice Fusion claimed that the EHR continuously

updates with regulatory changes through policy exports and provider feedback, and clinicians

do not need to take any action as the EHR automatically receives updates.

Beginning in Fall 2013, Practice Fusion solicited remuneration and negotiated with a

pharmaceutical company “Pharma Co.X,” later identified as Purdue Pharma, to create and

embed a pain clinical decision support (“Pain CDS”) functionality in its EHR.2 The pur-

1“Practice Fusion Lands A Whopping $70M To Bring A Big Data Cure To The Healthcare Crisis,”
TechCrunch, September 2013.

2All details and quotes in this section, unless otherwise specified, are from Exhibit C “Statement of
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pose is to increase prescriptions for Purdue Pharma’s three ERO products. During their

communication, Purdue Pharma expressed concern that “providers are hesitant about using

high dosages to combat pain for a variety of reasons, mostly political pressure.” In response,

Practice Fusion proposed developing a Pain CDS to initiate ERO products and embedding

Purdue Pharma’s ERO products as treatment options in an “unbranded effort.”

The two companies signed the official contracts on March 1, 2016, in which Purdue

Pharma agreed to pay Practice Fusion approximately $1 million. The Pain CDS function-

ality went live on July 6, 2016, providing a series of alerts and recommendations for both

diagnosing and treatments. First, it recommended providers to document a pain score for

the patient. Second, it displayed a “Brief Pain Inventory” with the patient’s previous pain

scores within the previous three months. Then the provider would go through a list of ques-

tions on the severity and impact of patient’s pain, summarizing the patient’s current pain

as “worst,” “on average,” and “least” in the previous 24 hours. If the patient reported a

pain score of four or higher twice within four months, or the patient was diagnosed with

chronic pain after completing the Brief Pain Inventory, the CDS utilized a drop-down menu

of options for pain management. Practice Fusion added an “Opioid Therapy” treatment

option without considering the patient’s condition. In particular, ERO products are listed

for patients with less than severe or non-chronic pain, and even in cases where the pain

could be treated with non-ERO options. This treatment option was combined with other

options in the list such as non-opioid analgesics and pain-management, which were sourced

from a 2016 New England Journal of Medicine article titled “Opioid Abuse in Chronic Pain

— Misconceptions and Mitigation Strategies” (Volkow and McLellan, 2016), although the

intention of the paper is not to provide a clinical instruction in chronic pain management.

On December 14, 2016, Practice Fusion conducted a presentation at Purdue Pharma’s

headquarter. The meeting revealed that through November 30, 2016, the CDSS had alerted

during 21 million visits involving 7.5 million patients, generating a general shift toward EROs

particularly from immediate-release opioids. The CDSS alerted more than 230,000,000 times

from July 6, 2016 to Spring 2019, in which it was suspended right before Purdue Pharma

filed for bankruptcy.

Facts” of Case 2:20-cr-00011-wks, United States Attorney’s Office for the District of Vermont.
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3.2 EHR Adoption

Our data construction starts with a granular record of eligible physicians adopting differ-

ent EHR products since April 2011, downloaded from the HealthIT.gov website. In 2009,

Congress passed and President Obama signed the Health Information Technology for Eco-

nomic and Clinical Health (HITECH) Act, encouraging the adoption of health IT to improve

the quality and efficiency of care. The Act created incentive programs that offer physicians

financial benefits for the meaningful use of EHRs. To start, the CMS and the Office of the

National Coordinator for Health Information Technology (ONC) have established standards

for EHRs to become certified. Practice Fusion’s EHRs were certified in 2011. Eligible pro-

fessionals (EPs), including most U.S. physicians, can adopt certified EHR technology and

attest to fulfilling meaningful use criteria to receive incentive payments. Each physician must

achieve three stages with different criteria to receive full payments.3

We focus on the Medicare EHR Incentive Program administered by the CMS from 2011

to 2016, providing a maximum of $44,000 in total payments across years.4 A participating

EP must demonstrate meaningful use every year to receive payments, and the CMS publicly

releases a complete record of attestation information, enabling researchers to track each EP’s

EHR products over time. The HealthIT.gov streamlines and disambiguates the raw data into

a single “EHR Products Used for Meaningful Use Attestation” file. In each attestation year,

this file lists all the certified EHR products attested by an EP (identified by the NPI). For

each record, it supplements the provider zip code, specialty, vendor name, product version

and product setting. The initial sample contains over 1.8 million records for almost 360,000

NPIs using 1,232 EHR products owned by 730 vendors.

We impose the following major restrictions on the initial sample. First, certified EHR

products span various application categories, including ambulatory, cardiology imaging, fi-

nancial decision support, human resources and IS security, etc. All Practice Fusion products

are ambulatory EHRs. To maintain comparability, we drop all the EHR products without

3These stages include data capturing and sharing (stage 1), advanced clinical process (stage 2), and
improved outcomes (stage 3).

4Alternatively, EPs can participate in the Medicaid EHR Incentive Program run by every state. However,
there is no centralized disclosure platform for Medicaid programs. But they can only participate in one
program.
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any ambulatory applications. There are over 1 million adoption records of the remaining

190 products by roughly 210,000 physicians. Second, we focus on the regions (3-digit zip

code areas) with non-zero physicians adopting Practice Fusion products to alleviate the con-

founding effects due to heterogeneous healthcare conditions across regions. In these regions,

we include only physicians with the same specialty as the Practice Fusion adopters in the

control group to account for practice differences across various medical settings. Lastly,

we drop physicians using four vendors with other misbehaviors in the Incentive Program,

including Athenahealth, Nextgen Healthcare, Modernizing Medicine (ModMed), and Green-

way Health. Their violations include missing the required functionality to become certified

and paying physicians to falsely attest.5 None of these vendors promoted opioids or received

kickbacks from opioid drug makers. The rationale is that physician practices may be dis-

torted by these EHR products as well, questioning their validity as clean control groups.

The final sample has roughly 27% (57,138) of the remaining physicians following the first

step. To sum up, these physicians participate in the Medicare EHR Incentive Program and

use EHRs with ambulatory functions. They belong to either the treatment group, adopting

Practice Fusion products, or the control group, comprising comparable neighbors of Practice

Fusion users.

3.3 Opioid Prescription

We then link the above sample to the “Medicare Part D Prescribers by Provider” dataset

by the CMS, containing annual prescription information by individual physicians under the

Medicare Part D Prescription Drug Program from 2013 to 2021. Relevant to our study, it

provides the total number of claims, costs, and days of supply of opioid drugs each year. Be-

sides, it provides the same information for long-acting opioids. These are drugs formulated to

release more gradually into the bloodstream with a longer duration of analgesic action. Pur-

due Pharma’s dominant ERO products, e.g., OxyContin, are all long-acting. We then back

out the short-acting (SA) opioid claim amount and also utilize antibiotic and antipsychotic

5The only exception is that ModMed solicited and received kickbacks from Miraca Life Sciences Inc.
(Miraca) in exchange for recommending Miraca’s pathology lab services. However, we cannot perform the
analysis based on this case since we do not have utilization data of Miraca’s services.
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drugs for placebo tests. As these drugs are not promoted by Practice Fusion, the treated

physicians should not exhibit significant increases in SA opioid prescriptions throughout the

sample.

We include a few patient characteristics as control variables. These include the average

age of beneficiaries, the percentage of male, African American, and Hispanic beneficiaries,

the percentage of beneficiaries qualified for both Medicare and Medicaid benefits, and the

average risk score of beneficiaries. The last variable is a hierarchical condition category

developed by the CMS based health-influencing factors.6

3.4 Purdue Pharma Detailing

Apart from manipulating the CDSS, Purdue Pharma’s primary marketing strategy involves

directly detailing to physicians. Indeed, since Purdue Pharma introduced OxyContin in

1996, it aggressively engaged in detailing to promote the product, leading to the decades-long

opioid crisis (Van Zee, 2009; Alpert et al., 2022). We retrieve Purdue Pharma’s detailing

information from the CMS Open Payments database. This database collects and reports

financial relationships between drug and medical device companies and providers since 2013,

involving detailing payments such as research, meals, travel, gifts or speaking fees. We record

whether physicians in our sample receive payments from Purdue Pharma in a particular year.

Section 5.2 compares the long-term effects of this direct marketing strategy with the indirect

manipulation of the decision support system on prescription behavior.

4 Research Design

4.1 Conceptual Framework

Our conceptual framework features a physician’s decision making process by maximizing the

chance of correct prescription in a setting of dynamic learning. For physicians i facing case

j at year t, they take a binary decision aij ∈ {0, 1}, where aij = 1 indicates prescribing

6These factors include the beneficiary’s age, sex, eligibility for Medicaid, initial reason for Medicare
qualification, residence in an institution such as a long-term care facility, and the diagnoses assigned to the
beneficiary in inpatient, outpatient and office-based settings during a base year.
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LA opioids. The underlying state ωj ∈ {0, 1}, unobserved to the physician, indicates the

true fitness of opioid usage. Physicians have disutility from both unnecessary prescription

(choosing a = 1 when ω = 0) and under-treatment (choosing a = 0 when ω = 1), with

payoffs modeled as

ui = −I{a = 1, w = 0}c1 − I{a = 0, w = 1}c2. (1)

In each case j, physicians observe patient characteristics Zj and possibly a Practice Fusion

pain alert, indicated by s ∈ {0, 1}. They then form a belief pit(ω|Zj, s) and generate the

likelihood ratio as

lit(Zj, s) =
pit(ω = 1|Zj, s)

pit(ω = 0|Zj, s)
=

pit(ω = 1|Zj)

pit(ω = 0|Zj)︸ ︷︷ ︸
qit(Zj)

× pi(s|Zj, ω = 1)

pi(s|Zj, ω = 0)︸ ︷︷ ︸
δi(Zj ,s)

.

The decomposition follows from the Bayes rule and has an intuitive interpretation. qit(Zj)

is the prior belief of physician i observing Zj in case j at year t. δi(Zj, s) ≥ 1 represents the

periodic belief update due to CDSS alerts. For simplicity, we assume δi is a static function

(independent of t) and physicians do not change their beliefs without seeing the alert, i.e

δi(Zj, 0) = 1. To model the long-term belief distortion, denote k by the number of years

that a physician j has observed positive CDSS alerts by t. We assume that every additional

period of exposure to CDSS manipulation will bias the likelihood upward by a certain degree:

qit(Zj) = qi0(Zj)
k∏

m=1

γm
i .

qi0(Zj) is the initial belief without learning. γ
m
i ≥ 1 is the belief bias due to the mth interac-

tion with manipulated CDSS. Note that γm
i is implicitly a function of patient characteristics

in that interaction. Finally, the payoff function in Equation (1) implies that physicians follow

a simple cut-off strategy by

ait(Zj, s) = 1

qi0(Zj)×

 k∏
m=1

γm
i

× δi(Zj, s) ≥
c1
c2

 . (2)
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The main prediction of this conceptual framework is that the treatment group will pre-

scribe more LA opioids relative to the control group from 2016 to 2021, if δi(Zj, s) ≥ 1

and γm
i ≥ 1 (and these inequalities strictly hold with non-zero probabilities). To illustrate,

consider two otherwise similar physicians but one uses Practice Fusion (treated) and one

does not (control) in the following three cases. First, in the year of 2016 (the initial treat-

ment period), both physicians have not interacted with manipulated CDSS, and thus the

second component in Equation (2) is one. The treated physician has a higher prescription

volume only due to the instantaneous belief update δi(Zj, s). Second, in the year of 2020 (a

post-treatment period), the last component equals one since the alerts are removed. But the

treated physicians still have higher chances of prescription due to
∏3

m=1 γ
m
i (three years of

previous interaction). Lastly, in the year of 2017 (the second treatment period), the treat-

ment group suffers both manipulation δi(Zj, s) and belief distortion γ1
i after one period of

learning. Empirically, we will first estimate the average treatment effects using regression

methods to confirm the existence of both channels, as detailed in the next section. We

then quantitatively decompose the effects from δ and γ using machine-learning algorithms

in Section 6.

Model Discussion We interpret physician human capital or skills as the precision of belief

lit(Zj, s). This definition of skill is consistent with Chan et al. (2022) and Agarwal et al.

(2023), or noted as decision making quality in Currie and MacLeod (2017). There are two

alternative ways to interpret γ. One is through physician preference (e.g. Abaluck et al.,

2016): previous LA opioids prescription makes physicians less concerned about the risk of

overdosing (a smaller c1 over time). This interpretation is equivalent to moving
∏k

m=1 γ
m
i to

the right-hand-side of Equation (2). The other one is through mis-belief in their treatment

skills when prescribing opioids (e.g. Chandra and Staiger, 2020). For example, previous LA

opioids prescription makes physicians more confident in using EROs to treat any type of

patients. This interpretation is equivalent to adding a positive utility of unconditionally

prescribing opioids (a = 1) in Equation (1). Both interpretations will generate long-term

reductions in the cutoff threshold. Given our data limitation, we cannot distinguish these

interpretations (see Chan et al., 2022) but the predictions are all consistent.
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4.2 Empirical Strategy

Our main sample includes annual observations of physician EHR usage and opioid prescrip-

tions from 2013 to 2021. This sample spans three phases: pre-treatment (2013 – 2015),

treatment (2016 – 2018), and post-treatment (2019 – 2021). Our primary specification is

essentially a simple DID design:

Yi,k,t = α + βPFi × Postt + γ′Xi,t + δi + µk,t + εi,k,t. (3)

In the above equation, Yi,k,t denotes the opioid prescription made by physician i in area k

during year t. PFi indicates whether physician i adopted Practice Fusion products in the

Medicare EHR Incentive Program. Postt is one if year t is greater or equal to 2016, and

zero otherwise. Xi,t indicates the set of control variables capturing patient characteristics,

detailed in Section 3.3. We include two-way fixed effects (FEs) — the physician FE, δi, and

the area-year FE, µk,t — which will absorb the standalone effects of PFi and Postt. This

specification effectively compares the opioid prescription of two otherwise similar physicians

in the same area and year, where one is exposed to the Practice Fusion manipulation, and

the other is not.

To estimate both the short-term and long-term effects, we estimate Equation (3) sepa-

rately in the following two samples. The first sample is truncated at 2018, including only

the pre-treatment and treatment phases, and demonstrating the direct effects of CDSS ma-

nipulation. Using the notations from our conceptual framework, the coefficients estimated

from this sample represent the joint effects from both manipulation δi(Zj, s) and belief dis-

tortion γm
i . The second sample drops the yearly observations from 2016 to 2018, consisting

of the pre-treatment and post-treatment phases, and exhibiting the persistent impacts on

human capital. As previously explained, any significant differences between the treatment

and control groups are fully attributed to
∏k

m=1 γ
m
i in this sample.

Table 1 Panel A summarizes the main variables in the whole sample (all three phases).

6,244 unique physicians, i.e. more than 10% of the sample, belong to the treatment group.

On average, each physician prescribes 13.35 annual LA claims, supplying 382 days of usage

and costing around $2,600 for all the beneficiaries. LA claims account for 4.26% of all the
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opioid claims. Since our sample focuses on the Medicare Part D prescription, the average

beneficiary in our sample is above 70 years old and more risky (139%) than the national

average (normalized as 1). Unconditionally, each physician has a 4% chance of receiving

promotional payments from Purdue Pharma.

Our identification relies on the parallel trend assumption, which requires that the treat-

ment and control groups exhibit similar tendencies in LA opioid prescriptions without Prac-

tice Fusion’s impacts. This assumption likely holds in our setting for the following reasons.

First, the self-selection concern is mitigated by the timing difference. Treated physicians par-

ticipated in the EHR incentive program and adopted Practice Fusion’s products in 2011. The

actual manipulation occurred in 2016. It is almost implausible that physicians could predict

the manipulation or intentionally adopted a product generating biased recommendations.

Second, there exists an alternative explanation that the treatment group had a stronger

preference for LA opioids. They insisted on prescribing Oxycontin after Purdue Pharma

suffered from litigation and reputation losses in recent years, while the control group was

more sensitive to the negative news. Contrary to this hypothesis, Table 1 Panel B shows

that, if anything, the treatment group were more conservative in LA opioids. Compared to

the control group, they supplied significantly 51 fewer days of drugs, and their prescription

rate was also 0.8% lower. More importantly, the two groups exhibit no significant differences

in receiving financial payments from Purdue Pharma. Lastly, we will further visualize the

coefficient dynamics, demonstrating no significant trends before the shock. Besides, we per-

form a placebo test that shows the null effects on SA opioids or other regulated medicines,

i.e., products not recommended in Practice Fusion’s CDSS.

5 Regression Results

5.1 Opioid Prescription

We start by estimating Equation (3) in the initial sample from 2013 to 2018 in Table 2

to investigate whether the treatment group significantly prescribed more LA opioids when

Practice Fusion manipulated the CDSS. This analysis provides a first-stage result to confirm

16



the existence of direct impacts in the short term. One might argue that as experienced

professionals, affected physicians will use their discretion to reject the manipulated rec-

ommendation and avoid unnecessary opioid prescriptions. Instead, Table 2 indicates that

physicians utilizing Practice Fusion EHRs experienced a significant 5.9% increase in annual

LA claims compared to the control group, equivalent to approximately 0.8 additional claims

each year, from 2016 to 2018. Meanwhile, their total LA opioid costs surged by 15.4%,

accompanied by a 11.4% increase in days of supply. A ballpark estimate of the total addi-

tional costs for Medicare Part D in our sample is approximately $2.5 million annually.7 This

magnitude closely aligns with Practice Fusion’s own prediction, ranging between $8,458,232

and $11,277,643, in opioid revenue driven by the CDSS.

Table 2 also includes a placebo test to validate our identification assumption. As we

explained earlier, Purdue Pharma’s leading products are extended-release opioids utilized

for chronic pain management, suggesting the manipulation should have minimal effects on

SA opioids. Column (4) confirms that the proportion of LA claims to total opioid claims rises

by 0.24 percentage points compared to the control group, corresponding to a 6% increase

from the sample average (4.26%). Lastly, column (5) shows that affected physicians do not

exhibit any significant differences in SA claims after the shock, confirming that the changes

were concentrated in LA opioids. The negative coefficient, though insignificant, is in line

with Practice Fusion’s claim that the CDSS alert generated a shift from SA opioids to ERO

products.

Next, we estimate Equation (3) in the sample consisting of both pre-treatment and

post-treatment phases. If the distortion in opioid prescription was only transient, then

affected physicians would not exhibit any significant changes in LA claims from 2019 to 2021.

However, Table 3 demonstrates that affected physicians continue to prescribe more LA opioid

claims even after the CDSS stopped making recommendation after the Spring of 2019. The

economic magnitudes are even larger. For example, column (1) implies a 11.6% increase in

LA claims, nearly double the corresponding coefficient in Table 2. Rises in LA opioid costs for

affected physicians become 30.8%, implying a $5.0 million aggregated additional payments

7The calculation is based on the sample average annual cost $2,623, multiplied by the coefficient and the
number of physicians in the treatment group (6,244).
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by Medicare Part D every year in our sample. The larger magnitude is consistent with

our conceptual framework, as long-term bias repeatedly accumulated during the treatment

window. This result implies that, through learning with AI, the short-term manipulation

will generate persistent long-term impacts on human capital. Affected physicians develop a

habit of opioid usage and ultimately maintain the tendency to prescribe opioids, regardless

of the CDSS recommendation.

Tables 2 and 3 estimate the average treatment effects in different phases. To visualize

the coefficient dynamics in the whole sample, we estimate and plot the coefficients βc from

the following equation in Figure 1:

Yi,k,t = α +
∑

c∈[2013,2021]
c ̸=2015

βcPFi × I(t = c) + γ′Xi,t + δi + µk,t + εi,k,t. (4)

I(t = c) indicates whether year t is calendar year c. βc estimates the difference between the

treatment and control group at calendar time c. Following the convention, we drop the year

2015, the year before the treatment, making it as the reference year in the above equation.

There are two main takeaways from the figure. First, there exist no significant differences

between the two groups in the pre-treatment phase (before the red vertical line), support-

ing the parallel-trend assumption. Second, while Practice Fusion manipulated the CDSS

(between the two vertical lines), affected physicians gradually increased LA opioid usage

over the years due to increased belief distortions. While this momentum stopped after the

suspension of biased recommendation in 2019, the treatment group maintained a constantly

high frequency of prescription. These dynamics explain the magnitude differences in Tables

2 and 3. This pattern also supports the key assumption in the conceptual framework: each

periodic interaction with the CDSS will lead to more long-term biases.

We perform a few robustness checks of Tables 2 and 3 in the Appendix. First, we show

that our results hold with a more restricted geographic boundary (5 digit zip code areas)

for the control group in Table B.1. This restriction will generate fewer observations in the

sample, as expected. But the coefficient magnitudes and statistical significance become even

larger. Second, we show that imposing granular Area × Y ear fixed effects is not necessary

for our results. Table B.2 shows that our results are robust to using the separated Area fixed
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effects and Y ear fixed effects. Lastly, we consider other regulated medicines in Medicare Part

D, which are antibiotics (due to concerns of antimicrobial resistance) and antipsychotics (due

to side effects such as obesity and metabolic disorder). We do not find that treated physicians

significantly increase prescriptions of these drugs in Table B.3. Consistent with column (5)

of Table 2, the estimated coefficients are all negative, suggesting a potential crowd-out effect

of long-acting opioid prescription.

We supplement additional evidence on the long-term impacts from the perspective of

real costs on beneficiaries. Starting from 2020, Medicare covers Opioid Treatment Programs

(OTPs) that provide medication-assisted treatment for people diagnosed with an opioid use

disorder (OUD) in Medicare Part B. Through the “Medicare Physician & Other Practition-

ers” file, we can aggregate the area-level Medicare utilization of OTPs based on the HCPCS

codes and use it as a proxy for local opioid addictions among the elderly group. We prefer

this measure over other public data, such as mortality due to drug overdose, for two reasons.

First, although we cannot track the actual OUD conditions of the identified beneficiaries

who received LA opioids from the treatment group, the aggregated utilization is a fuzzy but

consistent measure from the same Medicare group. Second, overdose mortality is an extreme

situation that occurs with a lower frequency, leaving us with smaller variation in the data.

Because the coverage began in recent years and did not span the pre-treatment phase,

we acknowledge the limitation of this analysis as correlational evidence and interpret the

results with caution. In Table 4, our focal regressor is the number of unique physicians who

adopted Practice Fusion in the Medicare Incentive Program in each 3-digit zip code area.

The outcome variables include the number of beneficiaries, number of services, bill charges,

and actual Medicare payments for OTPs. Control variables include local demographic char-

acteristics such as logged population, logged income per capital, male percentage, African

American percentage, Hispanic percentage, average age, unemployment rate, and health in-

surance coverage percentage. We find that Practice Fusion usage among providers indeed

correlates with long-term OUDs among the Medicare beneficiaries. For example, a 1% in-

crease in the number of Practice Fusion adopters is associated with 0.48% higher Medicare

beneficiaries and 1.245% higher Medicare payments for OTPs.

In this paper, we focus on Medicare because we have physician-level identifiers and consis-
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tent measures of opioid prescription and OTP for the same group of beneficiaries. However,

the concern is that almost all Medicare beneficiaries are the elder population, and our results

cannot be generalized due to heterogeneous patient demographics in other insured popula-

tions. To address this concern, we provide consistent evidence of long-term real costs using

the Marketscan database. The data provider sources commercial insurance claim informa-

tion for employees, retirees, and dependents from over 260 medium and large employers and

40 health plans. The initial database covers over 43 million privately-insured individuals

with employment-based health plans, representing roughly 14% of all insured. Due to pri-

vacy concerns, the data provider de-identifies the physician information so we cannot link

Practice Fusion adoption to individual service providers in this database. Moreover, granular

patient geographic identifiers, such as the zip code or the FIPS code, is also redacted and we

can only rely on the MSA information. As a result, our estimation effectively concentrates

on the metropolitan population.

We follow a similar strategy as Table 4 by defining the number of unique physicians that

adopted Practice Fusion in the Medicare Incentive Program in each MSA area. Notice that

this is still a valid measure in Marketscan because physicians testify meaningful use of the

EHR with patients insured by all health plans, not just Medicare. The word “Medicare”

in the program name is due to the federal sponsorship (CMS, rather than state medical

boards). In Marketscan, we have both inpatient (overnight hospital stays) and outpatient

(non-staying) visits of each patient. Based on the diagnosis code, we can infer whether the

patient has symptoms of drug overdose. Then for each MSA, we aggregate the number of

visits due to drug overdose and the total payments (insurance reimbursement and patient

copay) associated with these visits.

Table 5 shows consistent evidence that higher Practice Fusion adoption in a given area

leads to long-term overdose problems in the same place. A 1% increase in the number

of Practice Fusion adopters is associated with 0.13% more overdose payments in both the

outpatient and the inpatient setting. Putting these coefficients into economic magnitudes, a

typical MSA has on average 7 Practice Fusion adopters, and one additional treated physician

represents a 5 percentage point increase in Log(NumPF ) from the mean. The average

annual total payment due to drug overdose is around $600,000 for outpatient services and
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$1.3 million for inpatient services in each MSA. So these coefficients imply an estimated

increase of $40,000 outpatient payments and $88,000 inpatient payments associated with

that marginal treated unit.

5.2 Comparison to Detailing

In this section, we demonstrate that human capital distortion exists only when physicians

are unaware of the biased recommendation. To establish, we study an alternative group of

physicians that receive explicit in-kind payments from Purdue Pharma and evaluate their LA

opioid prescription behaviors over time. As shown in Figure A.1, Purdue Pharma detailing

activities peaked in 2014, where almost 4,000 physicians in our sample received promotion

payments. Recipient numbers steadily decreased, leaving only one physician with a financial

tie in 2019. There exist two potential reasons for this trend. First, the CMS Open Payments

system was implemented online in 2014, retrospectively revealing all the in-kind payments

from August 2013. Physicians might worry about their public images being damaged by

disclosed payments. Second, after Purdue Pharma’s 2015 settlement with Kentucky, other

states began suing rapidly. By January 2019, 36 states had sued Purdue Pharma. The

potential litigation risk might make the company more cautious with promotion.

Recall that our treatment group, i.e., Practice Fusion adopters, continue increasing LA

opioid prescription even in the background of Purdue Pharma’s negative publicity in this

window. Table 6 Panel A replicates Table 3 by comparing prescription behaviors before

(i.e., 2013 to 2015) and after (i.e., 2019 to 2021) treatment. Detaili indicates whether

physician i has received in-kind payments before 2019. Note that Purdue Pharma effectively

suspended detailing activities after filing for bankruptcy in 2019. Therefore, Table 6 allows

us to evaluate the possibility that detailing recipients maintain high opioid prescription rates

without further financial incentives.

However, former payment recipients substantially reduce LA opioid prescriptions after

2019. Their LA claim amount on average drops by 43% compared to the pre-treatment period

before 2015. Indeed, Figure 2 shows that their prescription frequency steadily decreased since

2015, consistent with the trend that Purdue Pharma detailing became less popular in the

same window. This result highlights that even though financial incentives can also contribute
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to transient jumps in LA opioid usage, they cannot foster a long-term preference. Physicians

may simply decide on prescriptions as a function of financial benefits and even worry about

litigation and reputation when lawsuits started to target Purdue Pharma. Therefore, we

argue that a key feature of artificial intelligence on human capital is the unconsciousness of

behavior changes. Our results mirror the literature studying how financial incentives affect

prosocial behaviors (Bénabou and Tirole, 2006). This literature argues that these rewards

may crowd out prosocial behaviors because receiving payments will damage a person’s social

reputation. Instead, this paper shows that rewards are necessary to compensate agents to

take antisocial behaviors at the cost of negative publicity.

Figure A.2 shows that the geographic distribution of the two physician groups is highly

uncorrelated (ρ = −0.19), further confirming our argument that Practice Fusion adopters

did not have other incentives to prescribe LA opioids. Table 6 Panel B, as a robustness

check, confirms our main findings from Table 3 remain valid after accounting for physicians

receiving detailing payments. From Purdue Pharma’s perspective, manipulating Practice

Fusion’s CDSS was a substitute for detailing in promotion, partially offsetting its revenue

losses.

6 Magnitude of Belief Distortion

6.1 Method

Table 3 suggests the existence of long-term belief distortion. We now quantify the economic

magnitude of this effect based on the conceptual framework. Recall that during the treatment

window from 2016 to 2018, an affected physician suffers both direct manipulation δi(Zj, s)

and belief distortion γm
i . We will separate out the impacts from these two channels using a

machine-learning algorithm built upon the multi-arm causal forest (Nie and Wager, 2021),

allowing us to estimate the conditional average treatment effect (CATE) as a function of

observed characteristics.

Our data are aggregated at the physician-year level without the granular information of

each visit j’s decision aij and patient characteristics Zj. Therefore, we need to estimate the
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expected probability of prescription based on Equation (2):

Pr(ait = 1|X̄j) =

∫
1

qi0(z)×

 k∏
m=1

γm
i

× δi(z, s) ≥
c1
c2

 f
(
z|X̄j

)
dz. (5)

In the above equation, f
(
z|X̄j

)
is the conditional distribution of patient characteristics. We

assume this distribution is characterized by physician-level variables X̄j, including the aver-

age beneficiary age, risk score, male fraction, African American fraction, Hispanic fraction,

dual qualification (Medicaid and Medicare) fraction, physician seniority (years since grad-

uation) and physician gender. Denote pT (X̄j) and pC(X̄j) as the equilibrium prescription

probability for the treatment group and control group respectively. Following Equation (5),

we can decompose pT (X̄j) into

pT (X̄j)

=

∫
1

{
qi0(z) ≥

c1
c2

}
f
(
z|X̄j

)
dz

+

∫
1

{
c1
c2

> qi0(z) ≥
c1

c2δi(z, s)

}
f
(
z|X̄j

)
dz

+
k∑

l=1

∫
1

 c1

c2δi(z, s)×
(∏l−1

m=1 γ
m
i

) > qi0(z) ≥
c1

c2δi(z, s)×
(∏l

m=1 γ
m
i

)
 f

(
z|X̄j

)
dz.

Each line in the above equation has an intuitive interpretation. The second line represents

the expected probability for a similar physician in the control group, i.e. pC(X̄j). The third

line represents the marginal treatment effect due to direct manipulation, denoted by τ0(X̄j).

In the last line, each summation term represents the additional long-term impact due to the

lth interaction, denoted by τl(X̄j). Formally, we will estimate the following equation using

the sample from 2013 to 2018:

p(X̄j) = pC(X̄j) + I{j ∈ T, t ≥ 2016}

t−2016∑
l=0

τl(X̄j)

 . (6)

I{j ∈ T, t ≥ 2016} indicates that the physician belongs to the treatment group and the

current year belongs to the treatment window. We also calculate the number of previous
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interactions k in Equation (5) by t − 2016. In the data, for each physician i at year t, we

quantify the prescription probability pi,t as the total number of LA opioid claims divided by

the total number of all claims, multiplied by 100. For clarity, pi,t is expressed in percentage

points due to low opioid prescription rates. As Table 1 suggests, in our sample, a typical

physician has 13.35 LA opioid annual claims on average, relative to 4,144 total annual claims.

Therefore, the unconditional average prescription probability is around 0.225%.8

The logic behind the multi-arm causal forest, or broadly the generalized random forest,

involves constructing a collection of decision trees. Each tree is built from a random subsam-

ple of the data as the initial node, and splits it into child nodes recursively to form leaves.

Each node is split based on a random subset of variables using threshold strategies. This

threshold strategy aims to maximize the difference in estimated treatment effects post-split.

Once the trees are constructed, the final treatment effect for a given data point is estimated

by comparing outcomes between treated and control units, weighted by how many times

they belong to the same bottom leaf.

We estimate τl(X̄j) by adjusting the multi-arm causal forest by Nie and Wager (2021)

as follows. In the original algorithm, each unit i belongs to one of the mutually exclusive

treatment arms, or the control arm. They then estimate the CATE of each treatment arm,

without any boundary conditions. In our setting, there is only one treatment arm, but

treated units gradually receive heterogeneous CATE τl(X̄j) depending on the number of

previous treatment periods. We also impose additional restrictions on regulating the values

of τ̂l(X̄j) to be non-negative. An important caveat is that τ1(·) and τ2(·) are estimated

conditional on τ0(·). Therefore, we cannot extrapolate the estimated τ̂1(·) and τ̂2(·) to the

2019 – 2021 sample without an independence assumption.

For each observation in the data (both treated and control), this algorithm generates

the predicted treatment effects τ̂l(X̄j) respectively, along with the baseline counterfactual

prescription probability p̂C(X̄j) in the control group. We derive the predicted probability

8Due to the extreme values of the right-tail outliers, we further truncate the sample at the 95th percentile.
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using Equation (6)

p̂(X̄j) = p̂C(X̄j) + I{j ∈ T, t ≥ 2016}

t−2016∑
l=0

τ̂l(X̄j)

 . (7)

6.2 Results

Table 7 Panel A summarizes our estimation results. In the whole sample, the average pre-

scription probability is around 0.242%, whereas our predicted values have a similar mean

of 0.241%. It is worth nothing that the standard deviation of the predicted value is much

smaller. There exists a big spike of zero prescriptions in the data whereas predictions smooth

this distribution around zero.. We summarize the predicted τ̂l from 2016 to 2018 (the treat-

ment window) in the remaining rows as a reference. The average τ̂l ranges from 1.2 to 1.5

basis points (bps), or roughly 5% to 6% of the unconditional average of p̂.

We cannot directly infer the economic impacts of long-term distortion from these average

values for the following two reasons. First, these treatment effects start at different calendar

years for a given treated physician. Second, τ̂l is a function of X̄j so the actual magnitudes

depend on the conditional distribution of X̄j among treatment units. Instead, we perform a

similar regression as Equation (3) in Panel B, except that we drop the control variables to

avoid bad control problems since they are a subset of X̄j used for prediction. The results

are quantitatively close if we keep the control variables.

As a benchmark, we first compare the raw prescription probability in data to the esti-

mated p̂ . Column (1) implies that a typical treated physician has a higher chance of LA

opioid prescription with 2.3 bps, equivalent to 9.5% of the unconditional average. ”Assuming

the average claim count (4,144), our estimates suggest a 0.95 increase in annual LA claims,

aligning with Table 2’s implied magnitudes. To assess the fitness of our predicted probability,

using p̂ as the outcome yields a 2.4 bps coefficient, matching the ground truth closely.

We next assume no long-term distortion by setting τ̂1 = τ̂2 = 0 in Equation (7). Under

this assumption, Column (3) shows a 54% reduction in the average treatment effect to 1.1

bps. Column (4) studies the possibility that there exists only a one-time belief distortion

and this bias does not reinforce with additional interactions. We consider this possibility by
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only setting τ̂2 = 0 in Equation (7). The coefficient becomes 2.0 bps, which is 17% smaller

than column (2).

Table B.4 examines the cross-sectional and time-series correlations among τ̂l . The first

three columns imply that the three treatment effects are contemporaneously correlated.

When an affected physician has a stronger response to direct manipulation, he also suffers

larger belief distortion at the same time. For example, a one basis point increase in τ̂0 is

associated with 0.17 – 0.20 bps higher τ̂1 and τ̂2. Physicians also exhibit persistent patterns

in their behavior changes, documented in the remaining columns. For example, column (4)

implies that a one basis point increase in τ̂0 in the previous quarter correlates with a 0.79

bps increase in the current quarter as well. This simple regression has a R2 of 0.69. A

higher reaction to the direct manipulation will also imply larger long-term belief distortions

in the next period. This large correlation can be due to persistent patient characteristics or

inherent physician preferences.

6.3 Heterogeneity

Which types of affected physicians are less sensitive to the implicit impacts from the Pain

CDS? In this section, we explore several heterogeneity tests based on ex-ante characteristics

to better understand the interaction between human and artificial intelligence. We first guide

our analysis with anecdotal facts about Practice Fusion’s strategy. During its communication

with Purdue Pharma, it believed the CDSS would target “opioid naive” users and utilize

their limited knowledge on potential addiction risks. Besides, if physicians had previously

prescribed opioids, they might be more attentive to the coverage of ERO’s risks and litigation

of Purdue Pharma, thereby reluctant to accept opioids as a treatment option. So we first

hypothesize that the experience of previous opioid usage for affected physicians will mitigate

the treatment effects.

We start with supporting evidence from our quantitative estimates. In Panel A of Fig-

ure 3, we separate the sample into two groups based on whether the physician had LA

prescription in 2015. We then plot aggregated treatment effects for each year within the

treatment window. For example, the difference between the treatment and control group is

purely driven by τ̂0 in 2016. So the first comparison implies that if a treated physician has
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no previous LA opioid usage, then his average response to the direct manipulation is much

larger (0.023% v.s. 0.017%). Adding long-term belief distortions in subsequent years yields

consistent results.

To confirm this hypothesis in our empirical study, we interact the treatment variable with

the pre-shock (2015) level of LA opioid claims for each physician in Table 8. The coefficients

of all interaction terms are negative with substantial statistical significance. To understand

the economic magnitudes, Panel A column (2) implies that a typical treated physician with

a pre-existing median-level LA prescription amount (0) will have a treatment effect of 18.1%

in the short-term. This impact will reduce to zero if that physician had around three LA

claims before the shock. Although our quantitative estimation cannot directly back out the

effect magnitudes from 2019 to 2021, Panel B documents consistent heterogeneity in this

alternative sample.

Next, we guide the heterogeneity test based on the feature importance of variables. Recall

that leaves are split by cut-off thresholds based on a subset of X̄j. For each variable xj, feature

importance measures the fraction of leaves split using thresholds related to that particular

variable. Logically, this measure tells how important each variable is in determining the

treatment effect heterogeneity. Table B.5 shows that AvgAge is the dominant splitting

variable, accounting for 48% of splits.. The following two are dramatically less important:

DualPct (17.5%) and AvgRisk (15.5%). We also believe there exists an intuitive logic for

patient age to generate substantial heterogeneity. Physicians may exercise additional caution

and invest more effort in considering the side effects of extended-release opioids when facing

older patients. Figure 3 Panel B, supports this hypothesis with the quantitative estimates.

As the previous figure, we plot the aggregated treatment effects corresponding to each year

with subsamples based on the median level of AvgAge in 2015. It is evident that the low-

age group has a substantially large treatment effect. Note that feature importance does not

necessarily suggest a monotonic heterogeneity pattern. Indeed, we find that higher treatment

effects tend to concentrate in middle-level DualPct and AvgRisk groups.

The regression results in both panels of Table 9 support this hypothesis as all interaction

terms are significantly negative. In terms of magnitudes, the high-age group has a net

treatment effect of 0.9 bps in column (1) of Panel A, which is roughly 30% of the low-age
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group’s effect (3.2 bps). Similarly, the high-age treated group will only increase the number

of LA claims by 2.3% in the short-term, which is 39% of the baseline effect and 23% of the

low-age group’s effect.

7 Conclusion

This paper sheds light on the lasting impacts of AI interactions on human capital in the

context of opioid prescriptions. A biased pain alert promoting the sales of extended-release

opioids resulted in a significant increase in opioid claims by affected physicians during the

treatment window (2016–2018). This effect persisted even after the removal of the biased

alert, indicating a long-term distortion in human capital development. Notably, this dis-

tortion was not observed in physicians receiving explicit payments from Purdue Pharma,

highlighting the unique role of AI in shaping human behavior beyond traditional financial

incentives.

The study contributes to understanding the risks of AI biases on professionals’ long-term

beliefs and habits. The unconscious nature of AI biases makes them undetectable even

by professionals with expertise. Instead, physicians may perceive the recommendations as

optimally generated from real data and update more favorable beliefs regarding the benefit-

risk profile of opioids over time. Consistent with the recent EU AI Act, our study serves

as a caveat for the potential risks of AI manipulation and the need for greater awareness

and accountability in AI-driven decision-making processes. In light of AI’s expanding influ-

ence across diverse sectors, managing its effects on human capital is essential for ensuring

responsible and ethical technological integration.

Lastly, this study has policy implications for the usage of artificial intelligence in the

healthcare sector. Closely related is the digitization of Prescription Drug Monitoring Pro-

gram (PDMP). PDMPs are state-administered registries of prescription data for controlled

substances (including opioids), assisting clinicians in inform prescribing decisions. While

PDMPs are considered as a powerful tool to stop the opioid epidemic, accessing the PDMP

requires the provider to use a separate record system and identify the patient. Many states,

such as Wisconsin, proposed to integrate their PDMPs in providers’ EHRs and even provide
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automatic alerts to facilitate clinical workflows. While we agree with the importance of in-

tegration, our works suggests that the alert system has to be cautiously designed to avoid

patients from mistakenly mimicking the recommendations.
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Figure 1: Treatment Dynamics of Practice Fusion’s Manipulation

This figure plots the treatment dynamics with respect to LA opioid prescription. We plot the βcs estimated

from Equation (4). x-axis indicates the calendar years. The base year is 2015 (indicated by the red vertical

line), that is, the year prior to the shock. The green vertical indicates the suspension of Practice Fusion

manipulation (2019). 95% confidence intervals are indicated by the solid lines.
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Figure 2: Treatment Dynamics of Purdue Pharma Detailing

This figure plots the treatment dynamics with respect to LA opioid prescription due to Purdue Pharma

detailing. As before, we estimate βcs in Equation (4), except that we replace PFi with Detaili. The base

year is 2015 (indicated by the red vertical line), that is, the year prior to the shock. The green vertical

indicates the suspension of in-kind payments (2019). 95% confidence intervals are indicated by the solid

lines.
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Figure 3: Treatment Effect Heterogeneity

This figure plots the treatment effect heterogeneity based on ex-ante opioid usage and patient age. Panel A

splits the sample based on whether the physician has used LA opioid before 2015. Panel B splits the sample

based on the median level of patient age. In each figure, we plot the average cumulative treatment effects in

the corresponding year, represented by the bar height. 95% confidence interval is also included.
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Table 1: Summary Statistics

This table provides the summary statistics of the main variables in the paper. Panel A summarizes the

annual observations of physicians from 2013 to 2021. PFi is one if physician i adopts Practice Fusion’s EHR,

and zero otherwise. Postt is one if year t is greater or equal to 2016, and zero otherwise. LAClaimsi,t is the

number of long-acting opioid claims by physician i in year t. LACosti,t is the dollar amount of long-acting

opioid prescription costs by physician i in year t. LASupplyi,t is the days of supply for long-acting opioids

by physician i in year t. LARatei,t is the percentage of long-acting opioid claims out of all opioid claims by

physician i in year t. TotClaimsi,t is the number of all claims by physician i in year t. AvgAgei,t is the

average age of beneficiaries visiting physician i in year t. MalePcti,t is the fraction of male beneficiaries

visiting physician i in year t. BlackPcti,t is the fraction of African American beneficiaries visiting physician

i in year t. HispanicPcti,t is the fraction of Hispanic beneficiaries visiting physician i in year t. AvgRiski,t is

the average risk score of beneficiaries visiting physician i in year t. DualPcti,t is the fraction of beneficiaries

qualified to receive both Medicare and Medicaid benefits. Detailingi,t is one physician i receives in-kind

payments from Purdue Pharma in year t, and zero otherwise. Panel B compares the treatment and control

groups in 2015, the year before the treatment. t-statistics are calculated based on standard errors clustered

at the 3-digit zip code level.

Panel A: Full Sample

Variable N Mean Std p25 Median p75

PF × Post 443,286 0.060 0.237 0.000 0.000 0.000
LAClaims 443,286 13.546 33.311 0.000 0.000 12.000
LACost 443,286 2,623.096 7,691.018 0.000 0.000 788.490
LASupply 443,286 382.032 928.782 0.000 0.000 360.000
LARate 443,286 4.255 8.898 0.000 0.000 4.628
TotClaims 443,286 4,144.498 4,876.197 754.000 2,616.000 5,884.000
AvgAge 443,286 71.925 3.930 70.090 72.415 74.381
MalePct 443,286 0.398 0.125 0.321 0.409 0.476
BlackPct 443,286 0.107 0.178 0.000 0.029 0.140
HispanicPct 443,286 0.072 0.154 0.000 0.000 0.077
AvgRisk 443,286 1.399 0.527 1.076 1.261 1.553
DualPct 443,286 0.223 0.184 0.085 0.181 0.321
Detailing 443,286 0.039 0.194 0.000 0.000 0.000

Panel B: Ex-ante Difference in 2015

Control Treat Control Treat
Obs. Obs. Mean Mean Diff. t-stat p-value

LAClaims 47,258 4,871 16.88 15.86 1.02 1.14 0.25
LACost 47,258 4,871 3,210.51 3,025.45 185.06 1.01 0.31
LASupply 47,258 4,871 479.65 428.36 51.29 2.08 0.04
LARate 47,258 4,871 5.15 4.35 0.81 3.65 0.00
Detailing 47,258 4,871 0.07 0.07 0.00 0.70 0.48
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Table 2: The Short-term Impacts on Opioid Prescription

This table provides the results on the short-term impacts of Practice Fusion’s CDSS on opioid prescription.

The sample consists of annual observations at the physician level from 2013 to 2018, i.e. the pre-treatment

and treatment phases. PFi is one if physician i adopts Practice Fusion’s EHR, and zero otherwise. Postt is

one if year t is greater or equal to 2016, and zero otherwise. Log(LAClaims)i,t is the logarithm of one plus

LAClaimsi,t. Log(LACost)i,t is the logarithm of one plus LACosti,t. Log(LASupply)i,t is the logarithm of

one plus LASupplyi,t. LARatei,t is the percentage of long-acting opioid claims out of all opioid claims by

physician i in year t. Log(SAClaims)i,t is the logarithm of one plus number of short-acting opioid claims.

Control variables include AvgAge, MalePct, BlackPct, HispanicPct, DualPct, and AvgRisk. Physician

fixed effects and area-year fixed effects are included. Standard errors are clustered at the 3-digit zip code

level, and t-statistics are reported in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

(1) (2) (3) (4) (5)
Log(LAClaims) Log(LACost) Log(LASupply) LARate Log(SAClaims)

PF × Post 0.059*** 0.154*** 0.114*** 0.236** −0.025
(3.943) (4.474) (4.117) (2.568) (−1.447)

Controls Y Y Y Y Y
Area×Year FEs Y Y Y Y Y
Physician FEs Y Y Y Y Y
N 305,082 305,082 305,082 305,082 305,082
R2 0.79 0.76 0.76 0.70 0.87
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Table 3: The Long-term Impacts on Opioid Prescription

This table provides the results on the long-term impacts of Practice Fusion’s CDSS on opioid prescription.
The sample consists of annual observations at the physician level from 2013 to 2015, and 2019 to 2021, i.e. the
pre-treatment and post-treatment phases. PFi is one if physician i adopts Practice Fusion’s EHR, and zero
otherwise. Postt is one if year t is greater or equal to 2016, and zero otherwise. Log(LAClaims)i,t is the log-
arithm of one plus LAClaimsi,t. Log(LACost)i,t is the logarithm of one plus LACosti,t. Log(LASupply)i,t
is the logarithm of one plus LASupplyi,t. LARatei,t is the percentage of long-acting opioid claims out of all
opioid claims by physician i in year t. Control variables include AvgAge, MalePct, BlackPct, HispanicPct,
DualPct, and AvgRisk. Physician fixed effects and area-year fixed effects are included. Standard errors are
clustered at the 3-digit zip code level, and t-statistics are reported in parentheses. * p < 0.1, ** p < 0.05,
*** p < 0.01.

(1) (2) (3) (4)
Log(LAClaims) Log(LACost) Log(LASupply) LARate

PF × Post 0.116*** 0.308*** 0.231*** 0.343**
(4.826) (5.694) (5.199) (2.476)

Controls Y Y Y Y
Area×Year FEs Y Y Y Y
Physician FEs Y Y Y Y
N 292,094 292,094 292,094 292,094
R2 0.72 0.69 0.69 0.62
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Table 4: Long-term Opioid Therapy Utilization

This table provides the cross-sectional evidence on the long-term costs for Medicare beneficiaries due to
Practice Fusion adoption. The sample consists of annual observations at the 3-digit zip code level in 2020
and 2021. Log(NumPF )k is number of physicians having adopted Practice Fusion in area k. OTPBenesk,t,
OTPSvcsk,t, OTPChargek,t, and OTPPayk,t are the number of beneficiaries, number of services, bill
charges and actual Medicare payments for Opioid Treatment Programs in area k and year t, respectively.
Control variables include local demographic characteristics such as logged population, logged income per
capital, male percentage, African American percentage, Hispanic percentage, average age, unemployment
rate and health insurance coverage percentage. Year fixed effects are included. Standard errors are clustered
at the area level, and t-statistics are reported in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

(1) (2) (3) (4)
Log(OTPBenes) Log(OTPSvcs) Log(OTPCharge) Log(OTPPay)

Log(NumPF ) 0.475*** 0.763*** 1.269*** 1.245***
(4.966) (4.984) (4.922) (4.895)

Controls Y Y Y Y
Year FEs Y Y Y Y
N 1,777 1,777 1,777 1,777
R2 0.28 0.28 0.27 0.27
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Table 5: Long-term Commercial Insurance Drug Overdose Visits

This table provides the cross-sectional evidence on the long-term costs for commercial insurance enrollees
due to Practice Fusion adoption. The sample consists of annual observations at the MSA level in from 2019
to 2022. Log(NumPF )k is number of physicians having adopted Practice Fusion in area k. ODV isitk,t
and ODPayk, t are the number of visits due to drug overdose and the associated payments in area k and
year t, respectively. Control variables include local demographic characteristics such as logged population,
logged income per capital, male percentage, African American percentage, Hispanic percentage, average age,
unemployment rate and health insurance coverage percentage. Year fixed effects are included. Standard
errors are clustered at the area level, and t-statistics are reported in parentheses. * p < 0.1, ** p < 0.05, ***
p < 0.01.

(1) (2) (3) (4)
Outpatient Inpatient

Log(ODVisit) Log(ODPay) Log(ODVisit) Log(ODPay)

Log(NumPF ) 0.123*** 0.131*** 0.138*** 0.133***
(2.739) (2.864) (3.457) (2.848)

Controls Y Y Y Y
Year FEs Y Y Y Y
N 1,300 1,300 1,280 1,280
R2 0.73 0.71 0.78 0.72
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Table 6: Comparison of Long-term Effects: Explicit Detailing v.s. Implicit Ma-
nipulation

This table provides the results on the long-term impacts of Purdue Pharma’s detailing on opioid prescrip-
tion. The sample consists of annual observations at the physician level from 2013 to 2015, and 2019 to
2021, i.e. the pre-treatment and post-treatment phases. Detaili is one if physician i had received in-kind
payments from Purdue Pharma by 2019, and zero otherwise. PFi is one if physician i adopts Practice
Fusion’s EHR, and zero otherwise. Postt is one if year t is greater or equal to 2016, and zero otherwise.
Log(LAClaims)i,t is the logarithm of one plus LAClaimsi,t. Log(LACost)i,t is the logarithm of one plus
LACosti,t. Log(LASupply)i,t is the logarithm of one plus LASupplyi,t. LARatei,t is the percentage of
long-acting opioid claims out of all opioid claims by physician i in year t. Control variables include AvgAge,
MalePct, BlackPct, HispanicPct, DualPct, and AvgRisk. Physician fixed effects and area-year fixed ef-
fects are included. Standard errors are clustered at the 3-digit zip code level, and t-statistics are reported
in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

Panel A: Effects of Detailing

(1) (2) (3) (4)
Log(LAClaims) Log(LACost) Log(LASupply) LARate

Detail × Post −0.425*** −0.805*** −0.661*** −2.191***
(−5.606) (−4.866) (−5.026) (−4.969)

Controls Y Y Y Y
Area×Year FEs Y Y Y Y
Physician FEs Y Y Y Y
N 283,358 283,358 283,358 283,358
R2 0.71 0.68 0.68 0.60

Panel B: Comparison of Effects

(1) (2) (3) (4)
Log(LAClaims) Log(LACost) Log(LASupply) LARate

PF × Post 0.180*** 0.435*** 0.337*** 0.698***
(7.153) (7.614) (7.165) (5.199)

Detail × Post −0.583*** −1.188*** −0.958*** −2.805***
(−7.470) (−6.943) (−7.038) (−6.444)

Controls Y Y Y Y
Area×Year FEs Y Y Y Y
Physician FEs Y Y Y Y
N 283,358 283,358 283,358 283,358
R2 0.71 0.68 0.68 0.60
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Table 7: Economic Magnitudes of Long-term Belief Distortion

This table exhibits the economic magnitudes of long-term belief distortion. Panel A summarizes the raw
prescription probability pi,t in the predicting sample, the predicted probability p̂i,t, and the estimated treat-
ment effects τl. We summarize the treatment effects in the treatment windows from 2016 to 2018. Panel B
estimates the average treatment effects using the probability in the data in column (1), predicted probability
in column (2), the counterfactual probabilities without any long-term belief distortion (without both τ1 and
τ2) in column (3), and the counterfactual probabilities with only one-time belief distortion (without τ2) in
column (4). No control variables are included. Physician fixed effects and area-year fixed effects are included.
Standard errors are clustered at the 3-digit zip code level, and t-statistics are reported in parentheses. *
p < 0.1, ** p < 0.05, *** p < 0.01.

Panel A: Summary Statistics

Variable N Mean Std.

p 314,643 0.242 0.530
p̂ 314,643 0.241 0.156
τ̂0 155,766 0.012 0.034
τ̂1 155,766 0.015 0.017
τ̂2 155,766 0.015 0.018

Panel B: Counterfactual Analysis

(1) (2) (3) (4)
p̂

p Original τ̂1 = τ̂2 = 0 τ̂2 = 0

PF × Post 0.023*** 0.024*** 0.011*** 0.020***
(4.821) (14.173) (7.029) (11.857)

Controls N N N N
Area×Year FEs Y Y Y Y
Physician FEs Y Y Y Y
N 314,145 314,145 314,145 314,145
R2 0.76 0.69 0.69 0.69
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Table 8: Heterogeneous Effects of Impacts: Long-acting Opioid Experience

This table provides the results on the heterogeneous impacts due to long-acting opioid prescription experience
before the shock. Panel A estimates the effects in the short-term sample (2013 – 2018) and Panel B in the
long-term sample (2013 – 2015 & 2019 – 2021). PFi is one if physician i adopts Practice Fusion’s EHR, and
zero otherwise. Postt is one if year t is greater or equal to 2016, and zero otherwise. Log(LAClaims)2015i

is the logarithm of one plus long-acting opioid claims for physicians i in year 2015, i.e. the pre-shock level
of LA opioid usage. pi,t is the prescription probability. Log(LAClaims)i,t is the logarithm of one plus
LAClaimsi,t. Log(LACost)i,t is the logarithm of one plus LACosti,t. Log(LASupply)i,t is the logarithm of
one plus LASupplyi,t. LARatei,t is the percentage of long-acting opioid claims out of all opioid claims by
physician i in year t. Control variables include AvgAge, MalePct, BlackPct, HispanicPct, DualPct, and
AvgRisk. Physician fixed effects and area-year fixed effects are included. Standard errors are clustered at
the 3-digit zip code level, and t-statistics are reported in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

Panel A: Short-term Effects

(1) (2) (3) (4) (5)
p Log(LAClaims) Log(LACost) Log(LASupply) LARate

PF × Post 0.057*** 0.181*** 0.403*** 0.319*** 0.878***
(12.997) (14.967) (13.878) (13.743) (12.135)

PF × Post −0.039*** −0.130*** −0.265*** −0.218*** −0.682***
×Log(LAClaims)2015 (−10.691) (−12.481) (−11.631) (−12.001) (−10.077)

Controls Y Y Y Y Y
Area×Year FEs Y Y Y Y Y
Physician FEs Y Y Y Y Y
N 304,420 304,420 304,420 304,420 304,420
R2 0.77 0.80 0.76 0.76 0.70

Panel B: Long-term Effects

(1) (2) (3) (4) (5)
p Log(LAClaims) Log(LACost) Log(LASupply) LARate

PF × Post 0.127*** 0.445*** 0.978*** 0.788*** 2.043***
(19.868) (21.536) (21.125) (21.006) (19.406)

PF × Post −0.093*** −0.342*** −0.697*** −0.580*** −1.770***
×Log(LAClaims)2015 (−18.384) (−21.458) (−19.238) (−19.939) (−19.600)

Controls Y Y Y Y Y
Area×Year FEs Y Y Y Y Y
Physician FEs Y Y Y Y Y
N 304,420 304,420 304,420 304,420 304,420
R2 0.77 0.80 0.76 0.76 0.70
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Table 9: Heterogeneous Effects of Impacts: Patient Age

This table provides the results on the heterogeneous impacts due to patient age. Panel A estimates the
effects in the short-term sample (2013 – 2018) and Panel B in the long-term sample (2013 – 2015 & 2019
– 2021). PFi is one if physician i adopts Practice Fusion’s EHR, and zero otherwise. Postt is one if
year t is greater or equal to 2016, and zero otherwise. HighAge2015i is one if average beneficiary age for
physicians i in year 2015 is above the sample median, and zero otherwise. pi,t is the prescription probability.
Log(LAClaims)i,t is the logarithm of one plus LAClaimsi,t. Log(LACost)i,t is the logarithm of one plus
LACosti,t. Log(LASupply)i,t is the logarithm of one plus LASupplyi,t. LARatei,t is the percentage of
long-acting opioid claims out of all opioid claims by physician i in year t. Control variables include AvgAge,
MalePct, BlackPct, HispanicPct, DualPct, and AvgRisk. Physician fixed effects and area-year fixed
effects are included. Standard errors are clustered at the 3-digit zip code level, and t-statistics are reported
in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

Panel A: Short-term Effects

(1) (2) (3) (4) (5)
p Log(LAClaims) Log(LACost) Log(LASupply) LARate

PF × Post 0.032*** 0.099*** 0.241*** 0.190*** 0.394***
(4.383) (4.785) (5.033) (4.914) (3.207)

PF × Post −0.023*** −0.076*** −0.167*** −0.143*** −0.299*
×HighAge2015 (−2.696) (−3.019) (−2.755) (−2.967) (−1.877)

Controls Y Y Y Y Y
Area×Year FEs Y Y Y Y Y
Physician FEs Y Y Y Y Y
N 304,420 304,420 304,420 304,420 304,420
R2 0.77 0.79 0.76 0.76 0.70

Panel B: Long-term Effects

(1) (2) (3) (4) (5)
p Log(LAClaims) Log(LACost) Log(LASupply) LARate

PF × Post 0.053*** 0.198*** 0.481*** 0.378*** 0.598***
(5.433) (6.346) (6.851) (6.743) (3.312)

PF × Post −0.030** −0.156*** −0.331*** −0.280*** −0.488**
×HighAge2015 (−2.384) (−4.124) (−3.849) (−4.091) (−2.029)

Controls Y Y Y Y Y
Area×Year FEs Y Y Y Y Y
Physician FEs Y Y Y Y Y
N 304,420 304,420 304,420 304,420 304,420
R2 0.70 0.72 0.69 0.69 0.62
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Appendix

A Appendix Figures

Figure A.1: Number of Recipients of Purdue Pharma Detailing

This figure plots the yearly number of recipients of Purdue Pharma detailing in our sample. We stopped

at 2019 since in-kind payments to physicians were effectively suspended after Purdue Pharma filed for

bankruptcy in 2019.
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Figure A.2: Number of Recipients of Purdue Pharma Detailing

This figure plots the geogrphaci distributioon of Practice Fusion adopters and detailing recipients in our

sample. Each area is a 3-digit zip code area. In each area, we calculate the fraction of Practice Fusion

adopters and detailing recipients over the total number of physicians in that area from our sample. Areas

without Practice Fusion adopters are marked in gray and dropped from the sample in our analysis.

Panel A: Distribution of Practice Fusion Adopters

Panel B: Distribution of Detailing Recipients
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B Appendix Tables

Table B.1: Robustness Check: 5-digit Zip Code Areas

This table shows the robustness of Tables 2 and 3 by requiring the control group to be in the same 5-
digit zip code areas and with the same specialty of the treatment group. Panel A estimates the effects in
the short-term sample (2013 – 2018) and Panel B in the long-term sample (2013 – 2015 & 2019 – 2021).
PFi is one if physician i adopts Practice Fusion’s EHR, and zero otherwise. Postt is one if year t is
greater or equal to 2016, and zero otherwise. Log(LAClaims)i,t is the logarithm of one plus LAClaimsi,t.
Log(LACost)i,t is the logarithm of one plus LACosti,t. Log(LASupply)i,t is the logarithm of one plus
LASupplyi,t. LARatei,t is the percentage of long-acting opioid claims out of all opioid claims by physician
i in year t. Log(SAClaims)i,t is the logarithm of one plus number of short-acting opioid claims. Control
variables include AvgAge, MalePct, BlackPct, HispanicPct, DualPct, and AvgRisk. Physician fixed
effects and area-year fixed effects are included. Standard errors are clustered at the 3-digit zip code level,
and t-statistics are reported in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

Panel A: Short-term Effects

(1) (2) (3) (4) (5)
Log(LAClaims) Log(LACost) Log(LASupply) LARate Log(SAClaims)

PF × Post 0.070*** 0.172*** 0.133*** 0.403*** −0.004
(3.895) (4.209) (4.010) (3.741) (−0.191)

Controls Y Y Y Y Y
Area×Year FEs Y Y Y Y Y
Physician FEs Y Y Y Y Y
N 86,934 86,934 86,934 86,934 86,934
R2 0.79 0.75 0.76 0.71 0.87

Panel B: Long-term Effects

(1) (2) (3) (4)
Log(LAClaims) Log(LACost) Log(LASupply) LARate

PF × Post 0.145*** 0.376*** 0.291*** 0.500***
(5.305) (6.121) (5.783) (3.249)

Controls Y Y Y Y
Area×Year FEs Y Y Y Y
Physician FEs Y Y Y Y
N 83,059 83,059 83,059 83,059
R2 0.72 0.69 0.69 0.63
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Table B.2: Robustness Check: Area Fixed Effects and Year Fixed Effects

This table shows the robustness of Tables 2 and 3 by specifying non-interacting area and year fixed effects.
Panel A estimates the effects in the short-term sample (2013 – 2018) and Panel B in the long-term sample
(2013 – 2015 & 2019 – 2021). PFi is one if physician i adopts Practice Fusion’s EHR, and zero otherwise.
Postt is one if year t is greater or equal to 2016, and zero otherwise. Log(LAClaims)i,t is the logarithm
of one plus LAClaimsi,t. Log(LACost)i,t is the logarithm of one plus LACosti,t. Log(LASupply)i,t is the
logarithm of one plus LASupplyi,t. LARatei,t is the percentage of long-acting opioid claims out of all opioid
claims by physician i in year t. Log(SAClaims)i,t is the logarithm of one plus number of short-acting opioid
claims. Control variables include AvgAge, MalePct, BlackPct, HispanicPct, DualPct, and AvgRisk.
Physician fixed effects, area fixed effects and year fixed effects are included. Standard errors are clustered at
the 3-digit zip code level, and t-statistics are reported in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

Panel A: Short-term Effects

(1) (2) (3) (4) (5)
Log(LAClaims) Log(LACost) Log(LASupply) LARate Log(SAClaims)

PF × Post 0.076*** 0.192*** 0.143*** 0.329*** -0.023
(4.925) (5.448) (5.044) (3.507) (-1.398)

Controls Y Y Y Y Y
Area FEs Y Y Y Y Y
Year FEs Y Y Y Y Y
Physician FEs Y Y Y Y Y
N 305,440 305,440 305,440 305,440 305,440
R2 0.79 0.76 0.76 0.70 0.86

Panel B: Long-term Effects

(1) (2) (3) (4)
Log(LAClaims) Log(LACost) Log(LASupply) LARate

PF × Post 0.151*** 0.386*** 0.292*** 0.529***
(5.684) (6.485) (6.036) (3.637)

Controls Y Y Y Y
Area FEs Y Y Y Y
Year FEs Y Y Y Y
Physician FEs Y Y Y Y
N 292,450 292,450 292,450 292,450
R2 0.72 0.68 0.69 0.61
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Table B.3: Placebo Test: Antibiotics and Antipsychotic

This table shows the placebo test of Tables 2 and 3 using Antibiotics and Antipsychotic. Panel A estimates
the effects in the short-term sample (2013 – 2018) and Panel B in the long-term sample (2013 – 2015 & 2019
– 2021). PFi is one if physician i adopts Practice Fusion’s EHR, and zero otherwise. Postt is one if year t is
greater or equal to 2016, and zero otherwise. Columns (1) and (2) are for Antibiotics and columns (3) and
(4) are Antipsychotic. Claimsi,t is the number of claims by by physician i in year t for the corresponding
drug. DrugCosti,t is the dollar amount of drug costs by physician i in year t for the corresponding drug.
Control variables include AvgAge, MalePct, BlackPct, HispanicPct, DualPct, and AvgRisk. Physician
fixed effects, area-specialty fixed effects and area-year fixed effects are included. Standard errors are clustered
at the 3-digit zip code level, and t-statistics are reported in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

Panel A: Short-term Effects

(1) (2) (3) (4)
Antibiotics Antipsychotic

Log(Claims) Log(DrugCost) Log(Claims) Log(DrugCost)

PF × Post −0.025* −0.012 −0.018 −0.023
(−1.780) (−0.515) (−1.466) (−0.785)

Controls Y Y Y Y
Area×Year FEs Y Y Y Y
Physician FEs Y Y Y Y
N 305,082 305,082 223,193 223,193
R2 0.86 0.81 0.91 0.89

Panel B: Long-term Effects

(1) (2) (3) (4)
Antibiotics Antipsychotic

Log(Claims) Log(DrugCosts) Log(Claims) Log(DrugCosts)

PF × Post −0.032 −0.018 −0.034* −0.016
(−1.478) (−0.484) (−1.911) (−0.395)

Controls Y Y Y Y
Area×Year FEs Y Y Y Y
Physician FEs Y Y Y Y
N 292,094 292,094 211,315 211,315
R2 0.82 0.77 0.88 0.86

51



Table B.4: Correlation between Direct Manipulation and Long-term Belief Dis-
tortion

This table exhibits the correlation between effects of direct manipulation and long-term belief distortion.
Columns (1) to (3) are estimated in sample years 2016 to 2018. The remaining columns are estimated in
sample years 2017 and 2018 due to the lagged explanatory variables. No control variables and fixed effects
are included. Physician fixed effects and area-year fixed effects are included. Standard errors are clustered at
the 3-digit zip code level, and t-statistics are reported in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

(1) (2) (3) (4) (5) (6) (7)
τ̂1 τ̂2 τ̂2 τ̂0 τ̂1 τ̂2 τ̂2

τ̂0 0.201*** 0.174*** 0.106***
(35.47) (38.16) (19.86)

τ̂1 0.336***
(50.58)

τ̂0,t−1 0.785*** 0.212*** 0.172*** 0.091***
(106.10) (35.02) (43.54) (20.59)

τ̂1,t−1 0.403***
(66.65)

N 155,766 155,766 155,766 102,658 102,658 102,658 102,658
R2 0.10 0.07 0.17 0.69 0.12 0.08 0.23
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Table B.5: Variable Importance

This table exhibits variable importance in estimating the causal forest. Importance is calculated as a weighted
sum of how many times feature j was split on at each depth in the forest, defined as

imp(xj) =

∑4
k=1

(
# Tree splits on xj at depth k
# All tree splits at depth k

)
k−2∑4

k=1 k
−2

.

Seniority is the number of years since physician’s graduation in medical school. PhysicanGender is one if

physician is female and zero otherwise. Other variables are defined in Table 1.

(1) (2)
Variable Importance

AvgAge 0.481
DualPct 0.175
AvgRisk 0.150
MalePct 0.059
Seniority 0.055
BlackPct 0.046

HispanicPct 0.030
PhysicanGender 0.002
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